CDF

Visual Basic Reference Manual

Version 3.9.0, February 2, 2023

Space Physics Data Facility
NASA / Goddard Space Flight Center

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet — nasa-cdf-support(@nasa.onmicrosoft.com

Contents

1 COMPIIING.cananaeiiiiiirrrricnisssnnricssssnrecsss 1 1

1.1
1.2
1.3
1.4

INAITIESPACES ... e euveeentteeuieeeatteetee et te e bt estbeeeabe e ettt e sateeate e bbeeabeeeabbe e st e easbeeaaeesabeesabeesabeesabeennteesnbeesabeenebeenbeeenaneensees 11
BaSE CLaASSES ...ttt sttt ettt ettt st be st h bt h et et ettt bbbt et et eh b ea bbb bt bbbt bt et eneen 11
Compiling With COMPILET OPLONSecveivieriieriietieeieetiese et eteeetettebeeteseessaeseesseesesssessaeseansessesssesseensessseans 11
SAMPIE PLOGLAMIS.eieiiiieeiieie et eetieeieete et e eteeteettesteetesaeesseeseeseassesseesseanseansesseesseansaenseansesssesseensannsesnsesasenss 12

2 Programming INterfacecceecveriecisssnnriccsssnnrecssssnssscssssnnssssssssnssssssssssssssssnnnss 13

2.1 TEEM RETEIEICING e euvieeiiiie ettt ettt sttt ettt e st et et e et esete st e enbeess e et senseesseensesnsesssenseenseanseensesseenseansennseans 13
2.2 COMPAUDIE TYPES ..vevierieiiiieiieeitett et eteettenteeteesteasaesseesseessessaesstesseessesssesssanseenseassesseanssensennsesssesseensennsesnsesnns 13
23 (01) 0031 1] -1 OO USSP UUUPSRUPRRPRRTON 13
2.4 CDF SEALUS ...ttt ettt ettt st ettt ettt e bt e st et e e ae e e bt et e en bt e m b e eh e e b e en bt e bt et eheeehe e bt e bt st saeenneenteenteea 13
2.5 CDF FOTIMALS ...ttt ettt ettt ettt ettt b et e et eae e et e et e bt eateeb e e b e em b e e bt emteeseesbeenbe e bt emeeeueenaeenteeneeens 13
2.6 CDF Data TYP@S. . uvieeieeeiiieeiieetieeeteesteestteestteestaeesseesssseasseassseeasseesnsesasseeasseesssesssssessssensesenssesnssesssessseessseensseens 14
2.7 DAt ENCOGINGES ...vieviieiiieeiiieiie ettt ettt e et et e et e etae e s tbe e tee e st aeseesssaeenseeesseesnseesnsaeasseesaseessseessseennsessss 15
2.8 DAt DIECOMINES ...veevvvietiieiie ettt ettt e ette et e sttt e et eesaeestbeessteesaeesssaenseeeseeesseeansaeanseesssaasnseessseessseensseesssennsees 16
2.9 Variable MajOritils.cceeriieieiieetierteeteette et eteettestaesseeseesaesaeesseesseessesaeeeseanseesseassesseanseanseessenssesseenseennesnnennes 17
2.10 Record/DimenSiOn VATIANCES.ccuverveereriertierteeeeesaenstesseessessesstesseasseassesseessesssesssesssesseensessesssesssessesnsessesnes 18
211 COMPIESSIONS ...vveevreneeeeeenteeeressteseasseasseaseastanseessesssesseenseansesssesssesssanseessesssesssanssenseessesssenseensenssesssenseessesnsesssenses 18
212 SPATSEIIESS ..veuvieeetieiteeeiiie et ettt e sttt ettt e sbeeeabeeeabte e bt e eabte et e e sabeeeabeeaateeeateeaate e bbe e bt e e bt e e bt e e nbteeat e e sabeeeabeesabeeenbeennee 19

B B N 1 6Tl el PSSR 19

2,122 SPATSE AITAYS ..eeivvieiiieiieeeieeetieetee et e eteesteessaeestseessseeseeesseesasaesseeasseesnsaeasseeassaenssessssaenssesnsseenseesseennseens 19
2,13 ATITIDULE SCOPES ..veevrieeiieeitrieiieertteeeteeteeesteeesteessaeesseessseeasseessseessseassseenseeassseansessnsaesnseesnsesasseesssesssseessseenseensens 19
2,14 REAA-ONIY MOAESoeieiiiiiieiiiieeiiete ettt ettt et e st e et e e st e estbeestaeessae e sbaenseeessaeeseaessaeanseesssaesnsaennseensseensses 19
2015 ZIMIOG@S ..t h ettt ehe e bt et a e et bt et e a et ea e R e eh e et e ea et eh e e bte bt e bt et e entenneeneee 20
2,16 =0.0 10 0.0 MOAESuveemeieiieiiieitiet ettt ettt ettt ettt st e ettt et e bt ettt e ae e b e bt en et et e b te bt e ebeeteeatenheenaee 20
2,17 OPeratioNal LAMILSccccveeiiieriieiieeeieeitteete et e eteeeteesteeesbeesbeesssesssseessseesseeanseeensseasseessssesssessssessnseessseessseenses 20
2.18 Limits of Names and Other Character SIIrNGScccceecverierieiieiiieeeerteeieeeeeee st eeeeteeaeseesseesesssesneenseesseenns 20
2.19 Backward File Compatibility With CDF 2.7ccooiiiieiieiietce ettt 20
2.200 CRECKSUIML ...ttt ettt ettt ettt bt et et ettt st s bt sbe bt e bt eaeea s et e b e saesb e ebeebtebe e st e st et e st e nbesbesbe bt s aeeatetennen 21
B N D T 1 7 VYU 15 o) 1 RSP PPR 22
222 BrBYE INEEEET ..eoutiiiiiie ettt ettt e b et ettt e b e et e b e e ea e st e e e bt e s ht e e bt e eb bt e eht e e bt e e bt e enbaeenbee et 23
B T 1< | <o) 1 o OSSR 23

3 Understanding the Application Interface.........cccccevcvnrcccsccnnrcccsssnnnecccscnnnneccess 24

3.1
32
33
34
3.5
3.6

ATGUIMENES PASSINEeieiiiiiiieieiieie ettt ettt ettt et e teesaessaesseesse e sesneeessesseenseensesnseesseseenseensesnsenssenseensenn 24
MUItI-DIMENSIONAL ATTAYS .veevvieevieeiieeiieetieeiteeeieeseteeeteeesteesteessteessseessseessseaseessseeesseesssseesseessseessseesssessssesssses 26
Data TYPE EQUIVAISNL.......c.oiiiiiiiieeiie ettt et te et e et e e te e ettt e steesaaeestsaessaesssseenseesnsaeenseessseeanseesssessnseennss 26
FIXEA STALEINENE.iiieiiiiieeeet ettt h e bttt s ee e s bt et e st et esaeeeb e e bt et e e ateeueensaenbeenaeas 27
EXCEPHON HANAIING.uiiiiiieiieiiieeiesie ettt ettt e et e e st e e aaeeteeesteesstbeenseesssaeansaessseeanseensseessseensses 27
Dimensional LIMIEATIONScotirtietiiiiiie ettt ettt ettt sttt et st st esbe e bt esb e et e bt e sbe et e enbeeaneseeenbeenneas 28

4 Application INterface.......ieeneicseecsercsercssnensnecssnecsssensssecssseesssssssssessssessssssses 29

4.1

4.1.1
4.1.2
4.13
4.1.4

4.2

I D500 21 20 N 2020015 10 FO USSR 30
CDFGEtDAtATYPESIZE ...uveeveieeieiieeieetieteetie et et et estae e sseeteesaessee st eseenseessensaenseanseenseessansaenseensennnesseas 30
(@10 33T B0 o) 1y 0107 0 5 14 1| USRI 30
(010 33 T B0 o) 1y Y1 43) U SPRU PRSI 31
CDF ZEtSTATUSTEXE ...ttt ettt ettt sttt e st e sttt esat e ettt e sbeeenbtesabeeeabeesabeesabeessbeenaneenns 31

42.1 (@15) 2ol 16 T PR 32

422 CDFCLOSECDE ...ttt ettt et e st e e bt et e e tesseesseenseenseestesseenseenseanseeasesseenseensenssennnensens 33
423 CDFCIRALE ...ttt ettt ettt et bt h et et e e e s he e e bt em bt et e e et e ebe et e en bt emteeae e bt enteenbeeneesaeenbean 34
424 CDFCIEAtECDIF ...ttt ettt a e bt ettt et e b et e st e e teeat et e et e en e eneesbeennean 35
425 (015 31 15) (<1 OSSR PRR PRSI 36
42.6 (D14 1) 517101 B SO 36
427 CDFAOC ettt h e b et eh e e et s he e s bt e bt et e s et e she et e en e en b e e a e e bt et en e entesbeenaean 37
428 (01 3135 (o SO O OO PRUPRUR 38
429 (010 33 { @1 1 TN 7 TSRS 38
00 L) B O B) 211] 1 T 13 1 1 USSP 39
4211 CDF ZEtCOMPIESSION ...vvieueieieeienerentietteetaenseesseesessaessaesseasesseesseesseansesssesssassensesssesseessesnsesssesnsesseessesnsesnes 40
4.2.12 CDFgetCompressioNCaCNESIZEoccvieieriieiieie ettt rte st sate et e steetee s e ssaesseesseensesnsesneesseenseenns 41
4.2.13 CDFgetCompreSSiOnInTocceeieriieiieieierie ettt et sttt et te st esteesseestessaeseeesseensesssesneesseensennns 41
00 U O B) 2 {1 070 0) 4 14 s L TSRS 42
E S E T O D) 3 14 B 1Tt 1a 43 VSO OO 43
42,16 CDFEEtENCOGING.....ccuiieiieiiieeiieiiteete ettt ete ettt e st e etee e teeesteesssaessseessseessseesssaesseeesseenseeansaeenseessseesnseennses 43
4.2.17 CDFEEtFIleBaCKWAId.ccciiiiiieciiie ettt ettt e st e s eteesta e e sbeessseensaeessaeesbaeenseesnseennseennses 44
T/ b T O D) 3 < 4 2] 31T} AU O PSSP 44
4.2.19 CDFgetLeapSecondLastUpdatedcccviiuieiiieriieieiieeieeeiieerteeieeeteeeteesteesaeesereesaeessaeesseeensseeseesnnes 45
4220 CDFEtMAJOTILY veevveeviieieeiieeeieesteesiteesttt e teeetteesteeesseesseeesseesssaeasseesssaensseesssaenseesnsseeseesssaeenseessseesnseennses 46
4221 CDFEENAIMEeeeuiieiiiieeiie ettt ettt ettt ettt ettt st e st e s e bt e s et e e sb bt e sat e e sbe e bt e enbaeeabeesabeeenbaesabeesnseesanes 46
4.2.22 CDFgetNegtoOPOSIPOMOUE........cciieiieiieeieiieie ettt ettt et e eet et e e tessaesseenseensesnaesneesseensennns 47
4.2.23 CDFgetReadONIYMOUE.ccceouieiieiiieieeiietieie ettt ettt e sae et e et e s testeenseessessaeseesseensesanesseenseensennns 48
4224 CDFZetStagECaCHESIZEeuveeeieiieiiieiieeie et ete e te st e e ettt e st et e beest e et s esseesseessesseesseenseensesnnesseenseensennns 48
4.2.25 CDFZEtVAlIAALE. ... eeiuieiieiieieeeieett ettt ettt et et e et e st e st e seese e et e ansaenseensessaesseensennsesnsesseenseensennns 49
E A R O D) 3 T AV 1 T) o RO USRS 49
E N B O D) 3 < 172\, [e [OOSR 50
4228 CDFINQUITE...cectiieitieetieeiteeeteesiteestteeeteestaeesteeeseeetaeasseesssaeasseesssaensseessseeasssensseasessnsseenseesnsesanseesnseensseensses 51
4.2.29 CDFINQUITECDF ..ottt ettt ettt ettt e et e e te e st e e s sbeessbeessaeessseesseeensseenssesssaesnsaesnseenssessnsas 52
T T B O D) 3103 o 1<) OSSR 53
E e B N O D) 3103 o 1<) 1 L] B) SO TSRS 54
e O B) 1<) [T TSRS 55
e T O B) 21 [T { G B) TSRS 56
4.2.34 CDFSCCACRESIZE. ...cvieuiiiie ittt ettt sttt ettt et e s ae e s e eat e s sesseenteessesssenseenseensesaeesseenseensennns 57
4.2.35 CDFSCCRECKSUIN....c.uieiieiiieiieetieit et ettt et teteete st e steesaeeaaesseesaee st enseesseseeseenseeseessaenseenseensesseesseenseensennns 57
4.2.36 CDFSCtCOMPIESSIONveeueeeererientienteetesteaseenseesessaesseeseassesssesssesseanseessesssesseensesssesssessesssessesssesseenseensesnes 58
4.2.37 CDFsetCompresSionNCACHESIZE.eevieiieriierieeiesteetteiee et eette st esteeaesseestaessesssessaesseeseessesssesseesseensennns 59
4.2.38 CDFSEIDECOMINE ... eecuvieetieiiieeiiesieesieestteestae ettt eeeeteesebaeesseessseessseesseasssessssaensseeseeenseesnsaeanseessseesnseensses 59
4.2.39 CDFSEIENCOMINGeeiuviieiieiiieeiieeeittesie ettt ete ettt e steeetee s teeesseesssaeesseesssaensseesssaensaeensseeseesssaeansesssseessseennses 60
4.2.40 CDFSEtFIleBaCKWAIcc.eiiiiiiiiiieiieiee e ettt sttt st st e et ee e s bt e naeeneeeaee 61
4241 CDFSEFOIMALcetiitieiiiitieice ettt ettt ettt et h e bt e sttt e e bt et en bt et e e s eesbe et e embeembenseesbeeneeentesaee 61
4.2.42 CDFsetLeapSecondLastUpdatedc.ccccuiieiieriiierieeiiieteesiec e eteesrtee et e steeseaeeseveesaaessbaeensaeesseenseeensas 62
. T O B) TE 1Y - o) 4 1SS RUP 62
4.2.44 CDFsetNegtoOPOSTPOMOUEcc.eoviieiieiieeiieiiesie ettt ettt ettt et te et e s e s saesseenseensesnaesseesseenneenns 63
4.2.45 CDFSetREAAONIYMOUEcueeeiiiiieeiieiieiiest ettt ettt ettt e s et enseesaeste e seensenssesnaesseenseensennns 64
4.2.46 CDFSetStagelacChESizZeioveeeiitieiieieeie sttt ettt s e st et e et e et e e e steesbesseesseenseesesnsesseenseensennns 64
4.2.47 CDFSEtVAlIAALE ...c..eeoiieiieiiciieeiieit ettt ettt et e st e st e et e e e see et e e s e ense et senseesseenseessessaeseenseennennne 65
B O B) 21721 (oY [T 65
43 VATTADIES ...ttt ettt ettt e h e b e bttt e he e eh e bt et et ehe et e et e bt eateebeenbeenbean 66
43.1 CDFCLOSETVAL ...ttt ettt ettt ettt et e s he e s bt et et e et e eb e et e en bt eateeaeeebeemteenbeeneeseeennean 66
432 CDFCLOSEZVAT ...ttt ettt ettt et a e bt et et e et e ea e bt e st eateeae et e enbeenbeeneesbeennean 67
433 CDFconfIrmMIVarEXISIEICE. ... cevueeutiiieeiieittetiet ettt sttt ettt st sb et es e atesbe et enbeesbesseesaean 68
434 CDFconfirmrVarPadValueEXISIEICEcc.eeiuieiiiiiiie ittt s 68
435 CDFconfirmMzZVarEXISEBICEcueeuiiiieiietieiiete ettt ettt et et e et en e e teseeenaean 69
4.3.6 CDFconfirmzVarPadValuEXISteNCE.ueivieriieiieiieciieiiesie ettt ettt ettt aeseeeeneas 70

4.3.7 (010 3w (T 11 A4 RSO RUUOSP PPN 71

43.8

4.3.9

4.3.10
4.3.11
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4.3.17
4.3.18
4.3.19
4.3.20
4.3.21
4.3.22
4.3.23
4.3.24
4.3.25
4.3.26
4.3.27
4.3.28
4.3.29
4.3.30
4.3.31
4.3.32
4.3.33
4.3.34
4.3.35
4.3.36
4.3.37
4.3.38
4.3.39
4.3.40
4341
4.3.42
4.3.43
4.3.44
4.3.45
4.3.46
4.3.47
4.3.48
4.3.49
4.3.50
4.3.51
4.3.52
4.3.53
4.3.54
4.3.55
4.3.56
4.3.57
4.3.58
4.3.59
4.3.60
4.3.61
4.3.62
4.3.63

CDFCIEATEZVALttt ettt et ettt st ae et e at et e bt et eae e eas e teenbeenneeanenbnenaeen 72
CDFAEIEIEI VAT ...ttt ettt sttt e h e et eat et et e st sae s b sb e e bt ebeebe et et et e e et e 73
CDFdeleter VarRECOTASoouiiiuiiiieiiieie ettt sttt sttt et e b et e be e aees 74
CDFdeleter VarRecOrdSREMUMDET............couuiiuiiiiiieiieiieie ettt ettt e 75
CDFACIBIEZ VAL ...ttt ettt et a e bt ettt eat e b et e st et eeae e et e et e enbeeneeseeennean 76
CDFdeleteZVarRECOTAS.coueiiiiiieiiiee ettt sttt et e b et ee e e eeaees 76
CDFdeletezVarRecordSRENUMDETcoiiiiiiiiiiiiieiie ettt 77
CDFgetMax WIitteNRECINUIMIScetiiiiieeiieiiiecitestte et e eteeteessteeeeveesbeessbeessaeessaeesssaesseessseessseesnsaennseees 78
CDFZEINUIMTIVALSeeiuiieiiieeitieeie ettt ettt et ettt et e st e e sabeesateesabeesbeeenbaeeastesbeesaseesabeesaseesateansneenns 79
CDEFZEINUIMZVATS ... iutiiiiieeiiteeie ettt ettt et et e bttt e st e e shbeesateesabeesbeeenbaesasaesbeesaseesabeesaseesateansneens 80
CDFgetrVarAIIOCRECOIAScocuieiieiieie ettt sttt st te et e e sse e seenseesseesaesseenseensenssennees 80
CDFgetrVarBloCKINGFACtOTccuiiiieieeieeiiet ettt ettt sae et e enteesaessaessaensesssennnes 81
(01D 3 VN { O 1e] 1 TS /USRS 82
CDFGEtrVarCOmMPIESSION......c.ceeuieeietieieeiteeteeteeteetestesseeseessessesseesseeseessesssesseeseesseessesssesseensesssesssesses 82
CDFZEIVAIDALAveeiieciieeiee ettt ettt te et e et e et ee s teeesbeessbeeesseessbaensseeseaenseesnsaeasseesssaennseessseensseenes 83
CDF OtV arDataTYPE .. eeeveeeiiieiee et eeteeettteste ettt eteeaeestaeesteessbeessseesssaessseesssaenseesnsaeenseessseesnsessssesnsseenes 84
CDFZetrVarDIMVarIanCeS.....ueieuieeiieriteeeitieriteestieesteesteessteeeseesseesseessseessseessseessessnsssessessssessssesssseessseenns 85
CDFZEIVAIINTO ...eouiiiiiii ettt et e et ee st e e e teestbeesaeebbeesseeansaeanseessseesnseesnseensseenns 86
CDFgetrVarMax AIIOCRECINUINooiciiiiiiiiiieiieeciteerite ettt et e et e steesteeessaeesaeessaaenseessseesnseesnsaensseenns 87
CDFgetrVarMax WIitteNRECINUINcccviieiiieiieeeieeciie ettt eeeete e siteeseae e aeesteeessaeensaessseeenseesnsaensseenes 87
CDFZEIVATNGAINIEoouviiiniieeiiieiiee ettt ettt ettt e et e st e bt e shteeate e bt e enbeesabaeenbeesaseesabeessbeesaneenss 88
CDFgetrVAarNUMEICIMENTSccuieiieiieieiesieetceie ettt ettt sae et et e e sseesteenseessensaesseensesnsessaennees 89
CDFgetrVarNUMRECSWIItEEIccveeiieiiieieciieie ettt st ettt e te et e esteesaensaesseensesssenneas &9
CDFGEtrVarPadValUec.oouiriieiieie ettt sttt sttt e e enbeensesseesaenseensennnenneas 90
CDFEetrVarReCOTADALA............ocuieiieiieieeie sttt sttt te s sttt e enteesaesse e teenseesseesaesseensaensenssennees 91
CDFZEtrVArRECVAITANCEccuvvieuiieeiiieciiieciiiesie ettt eite ettt et e et eesveeeebeessbaessaeessaaensaesnsaeeseesnsaennsessssesnnseenes 92
CDFZetrVarReSEIVEPETCENTeeeiieiiieciiie ettt eiteetteeiee et e e te e sebeeesaeestaeenteeensaeeseessseesnseesnseennseenns 92
CDFZEtrVarSDIMSIZES .. .c.vveeiiieiieeiieeieeetterte ettt steette et eeteesveesaseessbeessseesssaessaeensaeesseessseessseesssaensseenns 93
CDFZEtrVarSEqDatacc.eeeiiiiiieeiieiie et te ettt e eee s steeeteesveesbeessbeessaeessseeseeansaeesseessseeanseesnsasasseenns 93
CDF GOtV AISEAPOS ...cvtieiieeiiie ettt ettt te et e e ae e bee s beeeaseessbeeasseessbeensaeeseaenseeensaeanseesssaennseenes 94
CDFgetrVarsMax WITtHENRECINUITL........viiiiieiiiecieesteeiieeiie ettt e stee ettt e staeeseeeessaeessaessbaeenseessseensseenes 95
CDFGEtrVarsNUMDIIMScoveiieiieiieiesie st eieeteeiestesteeteetestesseesseeneeessesseesseenseenseessenseesseensesnsesssennees 96
CDFgetrVarSParsCRECOTAScc.eeriieiieiieiieeiestiete ettt ste ettt e teesae st e ssa e seenteensesseesaenseesesnnenneas 96
CDFZEEVATINUITL ..ttt s e s a bt e s at e e s bt e e sat e esbteeabtesabeesaseesabeesaneenteananeens 97
CDFEEtZVarAlIOCRECOIASeieuieiieiieieeiecttet ettt sttt et e st e et esbeesaesse e seenseesseesaesseenseensenssennnes 98
CDFgetzVarBlOCKINGFACTOT.cooieiieieeiieiecte ettt ettt ettt et e e nbeenseese e saenseensesnnennnas 99
(01D 3 7 A (O 1] 1 TS -7 RS 100
CDFZEtZV arCOMPIESSION ...eeuvvieiieereieeireeriteesteeetteesteeesteesseessseessseesssesssssesssesssseessseesssesssssssseesnsssessessnses 100
(@10 e AV 10 D - H USSR 101
(@10 e v AV 10 B T 1 4 T OSSR 102
CDFZEtZVArDIMSIZES ...eeiivieiieeciiiete ettt ee et e e te e et e eesbe e sebeesaaeestsaeesseessbesseeensaeensaeesesenseennses 103
CDFEtZVarDIMVATIANCESeecuvieieieeiiiieiiieeitieeiieeteeesteeeveesteeesteessseessseesssaensseesssessseesnssesssessssessssesssnes 104
(01D 3L 7YV 11§ o F USSR 104
CDFgetzZVarMax AIIOCRECINUINcviiiieiieiiiie ettt sttt ee st et eaaessaessaesreensesnnesseeseenseenns 105
CDFgetzZVarMax WIitteNRECINUINL.ocuviiiieiieieeie ettt ettt aeseee et e seaesaesaeesseenneennesneenseanes 106
CDFZEIZVATINGAINIEeoiiiitiieiie ettt ettt et sat e st e sttt et e e ate e s bt e esaee s bt e eabeesnbaeenbeesataesnbeesares 106
CDFGEtZVarNUMDIIMScuiiiieiieieeeieeieetieiestesteste et e stestesaeeseesteesaeseenseensesssessaenseesseensesseesseenseensennes 107
CDFgetzZVarNUMEICIMENLS.ccueeiieieeiieiieie ettt st seee st enteestesseasaenseensessaesseeseensesnnenseesseensennns 108
CDFgetzZVarNUMRECSWIILEEIeeiiiiiiiieiie ettt ettt et e te e s veeeaaeestbeesneeessaeeseeensaeensaeennes 108
CDFEtZVarPadValUe.........cooiiiiiieiie ettt ettt ettt te e te et aesae e e sbeesseeessaesnsaeeseeenseennss 109
CDFetzZVarReCoTdDataeecvieriiieiiieiieeiieeiteeiteeieeetee st e eeteesteesateessvaesaseesssaesseesnsaeenseeensaeenseesnses 110
CDFEtZVArRECVATTANCE.....c.uviiiiiieeiiieiiiecieeeiie et stee et e et eetee et e stteesaaeesbeessseessseesaeessseenseeensesenseesnses 111
CDFZEtZVarReSEIVEPEICENL.ccuvieieiieiiiieiieetie et etee et e etee et e ettt e st e e s beesebe e nbeessbaesseeesssesseeensaeensaesnses 111
CDFZEtZVArSEODALAeecvieiieeciieeie ettt ettt ee e rte e et e et e e esbe e st e eaaeestbaeeseeessseeseeansaeensaeensaeenseennses 112
CDFZEIZV ATSEOPOS. ..ttt ettt ettt e st e ettt s bt e et esabe e eabee st aeebeesars 113

CDFgetzVarsMax WrittenNRECINUIMc.uiiieiiiiiciccie ettt s sanenne 114

4.3.64 CDFgetzVarSparsERECOTAS.cueriiiiiiie ettt sttt st ettt et e st et e et e enseenbenseesseenseensennees 115

4.3.65 CDFhyperGetrVarDatacccovieiiieiiieiecieeiieie ettt et st e sttt e st e s aesseasseenseessessaesseensesnsesssensees 115
4.3.66 CDFhyperGetZVarData..........cccieiiiiiiieiiieiieecite e eiee st e ettt essteestaeeseteessaessseaesseesnsaessseessseassseessseensseenes 117
4.3.67 CDFhyperPUtIVarData.........c.ccccuieiciieiiieiieeeiieesiteeite et e eteeteestteessteesteessseessaeensaessseeenseesnsaassseessseensseees 118
4.3.68 CDFhyperPUtZVarDatacccceeiiieeiieiiiieeieeite ettt ettt esaeestbeesteeessbeebeesnsaesnseesnsaessseessseessseens 120
4.3.609 CDFINQUITETIVALviiiiiieeiieiieeeteeteeete e ettt estteeteeesteesseesssaeesseesssaessseeasseesseasssaesseesseeessessssesnssesssseenssenes 122
4.3.70 CDFINQUITEZ VATciitieiiieciiieie ettt eteeeeesteeeteeetaeeaeesabeessseessseessssessseesseeasssessseesnseesnseesnseensseesssesnssenns 123
4371 CDFPUITVAIDALA ...cccviieiiieciiiecieecieete et sttt e et esteeetbe e sebeessbeessseesseeesssaeseesnsaesnseessseessseessseessnennns 124
4372 CDFPUIVarPadValUecccuiiiiiieie ettt sttt ettt e s e e esteenaesseenseenseensesnnesneas 125
4.3.73 CDFpUtrVarReCOIADALA.cccueriieiieiieiieeie ettt ette sttt te et et e saeesaesneessaesseenseenaesseenseenseensesnnesseas 126
4.3.74 CDFPUIIVarSeqDataccueiiuiiieiieiiieet ettt ettt et ettt e et e s bt e eabee s beesateesaraenbee e 127
4.3.75 CDFPUIZVAIDALA. ...cc..eiiiiiiiiiieeette ettt ettt e b e e te st e e e bt e s bt e sabeesb bt e sabe e ateenaeeenne 128
4376 CDFPUtZVArPadValUe........cccoiiieiiiiieiieieiese ettt sttt ettt e st et eeneeesaense e seensesneensees 129
4.3.77 CDFputzVarRecCOrdDatac.ccveriieiiieiiiiesiieieeie ettt ettt sttt see e snaessaes e enteenaeessenseenseensesnnessees 130
4.3.78 CDFPUIZVAISEIDALA....c..viiieiieiieeeiiieie ettt ette et e et e st esbe e stbe e taeesbbeesseeessaeesseesssaesnseesnseessseensseensseenns 130
4.3.79 CDFTENAMEI VATcciciiiciieeiiteeieecittete ettt stte et eeteeetteesabeessseessbaensaeesssaensaesssseanseeansaesnsesssseessseessseenseennns 131
4.3.80 CDFTENAMEZVALeeiiiieiiieeiiieiieeeitteete ettt estteeteeesteeesteessseessseesssaesseessseenseesssseanseeassaesnsesssseessseessseenseennns 132
4.3.81 CDFsetrVarAlloCBIOCKRECOTAS.......cccuiiiiiiieiieiie ettt ettt e stae e svaeebee s beeesseesnseessseenns 133
4.3.82 CDFSetrVarAllOCRECOTAScccviiiiiieiiieiieeiieeiteesite et et e et e steeseveesteesseeessaeessaeessaesnseesnseassseesssaenssensns 134
4.3.83 CDFsetrVarBIOCKINGFACIOTcciiiiiiieiiieeie ettt eete et et etee et e eteesteesaeesebaessaeesaeeseeensaennsessssaessseenns 134
4.3.84 CDFSEtrVarCaCheSiZecccuiiuieiiiiiieiieieeie sttt ettt ettt e st e st e aeeseeessessaenseenseenseessenseenseensesnnesseas 135
4.3.85 CDFSCtrVarCOmMPIeSSIONeeuverererteereeeteetrenteeteesessaesseeseassesssesssesseesseassesssesseassesssesssesssssseessesssesnsessees 136
4.3.80 CDFSErVarDataSPeCceruuiiriiiiiiieiieeiie ettt ettt ettt et ettt et e e bee s beeeabee s bt e sabeesateessaeesbeeenaneenns 137
4.3.87 CDFSetrVarDIMVAITIANCESccverueeiieieeiiestieieetestteseesseesessaesssesseesseessesseesseasseensesssesssessesssesssesssessees 137
4.3.88 CDFSetrVarInitialRECSc..eeuiiieiiieie ettt ettt e steeste st essaes e enteenaesseensaenseensesnnesseas 138
4.3.89 CDFSetrVarRECVATIANCE.ccccueeiuiieiieeiiieieciteesiee et e st e etteesveesbeesebeessaeessseesseesnsaesnsesssseesssesssseensseenns 139
4.3.90 CDFSetrVarReSEIVEPEICENLcccvieiiieiiiieitieeiieieteeite et e et e steesebeessteessaeesssaesseeesseesseesnsaesssesssseensseees 140
4.3.91 CDFSetrVarsCaCheSizZeeeeviiiiiiiiieiie ettt ete et et e et esteesta e e sbeessaeesssaesseessseeenseesnsaeasseessseessseanes 140
4.3.92 CDFSEIVAISEGPOS ...uvieeiiiiiiieiteit ettt erte ettt e ee et e e teestbeesbeessseessbeensaesssaenseeensseenseesnsaenssesssseensseenes 141
4.3.93 CDFSetrVarSPars€RECOTAS.c.eeiuieeiieriiieeieeieerteeieeette st e steeeteestbeessseessbeesseesnsaesnseesseassseessseensseesns 142
4.3.94 CDFsetzVarAlloCBIOCKRECOTAScccveeruiiiieiiiiieeiiteeiie ettt este e steeseteetaeesaeeensaeebeessseesnseesnseessseenns 142
4.3.95 CDFSetZVarAllOCRECOTASccveiiieiieiieiieeie ettt ettt ettt eteenaeere et eenseeseennesneas 143
4.3.96 CDFsetzVarBIOCKINZFACIOLccviiiiiieiieiieiieie ettt ettt st e e nte e e e ssaenseenseenaesneas 144
4.3.97 CDFSEtZVArCaChESIZEcuveiuieieieciietieiieie ettt ettt sttt te st e saeesaeeatesseaseeseenseeseeessenseenseensesseensean 145
4.3.98 CDFSCtZVarCOmMPIESSION.ccuveereeeeteeeeeseeteesteasesseesseeseassesssesssasseessesssesssesseasseesseessenseessesssesssesssessees 145
4.3.99 CDFSEtZVarDataSPEC .. .eeeiuiiiiiiiiiieiieeitt et ettt ettt ettt ettt s et e bt s bt e et e st besbeesabeesabeessbeesaneann 146
4.3.100 CDFSetZVarDIMVariQneescueeveeuieriieieeiieeeestiestietestesteesseessesesesseesseensesssesssenseesseensesssesseenseesesnns 147
4.3.101 CDFSEtZVarInitialRECS.veeiiiiiiieeiiecieeeee sttt ettt ee e e st esbeesstaesbeessbeeessaensseessnaenseen 148
4.3.102 CDFSEtZVArRECVAIANCEccuviiieiieeiieiiieeieeeie ettt este et e e et eeteesebaesbeesstaessseesseessseensseenssennseens 148
4.3.103 CDFSEtZVarRESEIVEPEICENTc.veieiieiiieeiee ittt ettt e et ee et e s eebeesteessbeesebeesssaesseeensseenseeas 149
4.3.104 CDFSEtZVArSCACNESIZEeeeviieiieeiiiciieeie ettt ettt teestae e tee et e s teeesbeesabaessbeesssaessseensseensseenssenn 150
4.3.105 CDFSELZVAISEAPOS ...cevieeeiieeiie ettt ettt et et e et e et e e esbeesebeessbeesssaesnseesseensseensseeseaenseenn 151
4.3.106 CDFSetzVarSparsERECOTASc.cevieiiiiieiiesie ettt ettt e e et sse e be e e snaenseeseenes 151
4.3.107 (0B B O Lo 1TSS 152
4.3.108 CDEFVATCTEALEveeiieeiiie ettt ettt ettt ettt e at e et e e bee s bt e sabee s beeesbeesateesabeesateesnbeensbeenstesnseenn 153
4.3.109 CDEFVATGEL ...c.eeieteeieeee ettt ettt ettt e et e et e st b esabe e s e bt e s abeesbt e e sabeenabessbeeenbeesnbbeenbeesn 154
4.3.110 CDEFVATHYPEIGET ..ottt ettt ettt et e st e e sab e st e eate e sbbeenbteebbeebee s 155
4.3.111 CDEFVATHYPEIPUL. ...ttt ettt et st e s bt s et e st e e bt e esbeenbaessbeeeaseenn 156
4.3.112 CDEFVAIINQUITEveevieeiiie ettt ettt ste ettt e st e et e e aeesabeestseessaeesseeasseesasaeasseessseesnseensseessesnssessssennseenn 157
4.3.113 CDEFVATNUIMectiiiitiieiieesieeeiee et e et e st eete e st eette e taeesaeeessaeessaeesseessseesnseeesseensseessseeassaenssessesenseesnseenn 159
43.114 CDEFVAIPUL ...ttt ettt ettt et e ae bt e st e a et et e seseeete bt ebe e bt eneene et ensensenseneenes 160
4.3.115 CDEFVATRENAMEeiiiiiiiiie ettt ettt ettt ettt e sttt e s te e tbeesaeesataeasbeesstaessseesssaeanseennseesssasnssesnssennseean 161
4.4 ATTIDULES/EIETIES 1...vvieivieeitieeiieeiee et et e et e st e ettt esbeesateestaeestbeesseeessaeenseesnsaesnseesseessseesnsasasseessseenssesssseenseeenns 161
4.4.1 (@10 3 { O (< | £ PSPPI 162
442 (@1D) BT85035 T4 10 | (SRS 163

443 CDFAtIGEL ...t s 164

444 (@1D) 2115 1 T 1351 165
445 CDFAINUINL ..ottt ettt et st st ea et ettt et ess e eabesanesue e bt eaneeunesanesaeenneennenaee 166
44.6 CDFAIIPUL <.ttt ettt et ettt ettt ekt e bt eb e eheenteme et e aeeeeebeebeeaeebeeneeneeneeneenseseeneas 167
4.4.7 (01 3115 A 1 101 OO URURSRUSTRT 168
448 CDFcONfIrMAMIEXISTEICEeeutieiiieiiiitieieeee ettt ettt b ee e st sae e e 169
449 CDFCONfIrMEENTIYEXISIEICEc.uviitiieiieeiieeiteeiteeie e eite et te ettt esteesete e st e esaaeeseseesseeensaeenseeensaeenseennses 169
4.4.10 CDFconfirmMrENtryEXISIENCE. ... ueeiviieieeiiiieiie ettt eeiteeite st e eieeettesteeseteessaeessaeesseeesaeeseesnseesnseessseessseenns 170
4.4.11 CDFconfirMZENTIYEXISIENCEeeivviiiiieitiieiieeiieesieeeite st e eieeeteesteestteesateesaeesaeeensaeensesssseessseessseessseenns 171
4412 CDEFCTEAEAMI ..ottt ettt e sttt et et st a et et st e bt et eeb e e sae et eaneeanenanenaees 172
4413 CDFAEIEALLT ...ttt ettt ettt st be st eb e bt bt et et et sttt sbe bbbttt e e e b naens 173
O N O B) ' 1<) 1 Y AN 4 4 23 1 USROS 173
4.4.15 CDFAeletCAITENLIY ...cuieiieiieie ettt ettt e b e e e s see st e saeeseesaeessaenseenseensesseenseenseensennnenseas 174
O L O B) ' 1<) 1 Y N 4 74 25 113 TSROSO 175
4ATT CDFGEtAUIEENIIY oottt ettt ettt e st e et s bt e et e s beeeabeesabeesabeesaneennneanes 175
4.4.18 CDFgetAttrgENtIYDataTYPe ..ocveeieiieeiieiiiieeeeeite ettt eiee st ettt e eteestbeesaeeessbeebeesnsaeenseesnseessseenssesnssensns 176
4.4.19 CDFgetAttrgEntryNUMELSIMENLSccviiiiiiiiiieiieeiieeciee ettt ettt e ste et eeveeaaeeseaeenseesseeesseesssaessseesns 177
4,420 CDFEEtAIMAXZENIIY .uviiiiiiiiieiiiecieeie et eieeertteestee et eeeteessbeessaeessbeesseeessseensseensaeenseesseessseesssesnssensns 178
4,421 CDFEEtAUIMAXTENLIY o...viiiiiiiiiieciieie ettt et e et e et e e be e st e essaeestbeessaeesssaesseeensaesnsesssseessseesnsesnsseenns 179
4,422 CDFEtAIMAXZENIIYiiiiiiiiiecie ettt ettt eee et e te e ettt e teeetbeesebeesaesseaenseesnsaeenseessseansseesssaensseenes 179
4,423 CDFEELAINAMEecuveieeiieiieeeieeetieste ettt eteetteesteeeveessteessseessseesseessseenseeesssaasseesnsaesnsesssseesssesssseenssenns 180
4424 CDFEAIIINUITL.c...eiitiiiiie ittt ettt e st e st e s et e ettt e sbbeesbeeeabaeenbeesabaesabeesabeesaseennseensneenas 181
4.4.25 CDFEAITENITY ..ooruiiiiiiiiieee ettt ettt et ettt e e et e s bt e et eesabeesabeesasaensnee e 182
4426 CDFetAttrrENtryDataTyPe. ..ccueiiiiiiieiiiiiiecte ettt ettt ettt st e b e st e e beesabee e 183
4427 CDFgetAttrrEntryNUMEICIMENTS........eooiiiiieiieiieiieie ettt sttt e aesreensaenseesaenees 183
4428 CDF GEtAISCOPE . eeutieitieitiee ettt ettt ettt st e s bt e sat e et e e bte e s bt e eabee s bt e eabeesabaesabeesaseennbeee 184
4,429 CDFOtAIZENIIY ..eiiiiiiiie ettt ettt erte ettt e et e et e ettt e sbeesabeessbeesaeessseesseesssseanseeanseeenseesssaessseesssesnssennns 185
4430 CDFEetAttrZENTIYDAtaATYPE .oocuveeciiieeieeiiieeteeiie et e eite et e et e ete e aeestbeessee e sbeeseeessaesnseesnseessseessseensseesns 186
4431 CDFgetAttrzEntryNUMEISMENTScccveiiiiiiiieeiie ettt eeieeete ettt eseteesvbeenaeeesaeebeessseessseesssaessneenns 187
4,432 CDFEtNUMALIGENTIIES ..o.viiiiieiiieeieeciteeie ettt e et et eeteesbeestbeessbeessaeessseesseeesseenseessseessseessseessseenns 188
4,433 CDFEtNUMALIIDULESeeivieeieeiiieeieesieeeteesteeesteeeitesteessteesseessseessseessseesssaessesessesssesssseessseesssesnseenns 188
4,434 CDFEtNUMALITENTIIES ...ectiieiieiiieeieeciteeie et eet e et e et eeteesbeessbeessteessseesssaenseeesseensesssseesssesssseessseenns 189
4.4.35 CDFZetNUMAMIZENIIIES.c.eiiiiitieiieie ettt ettt ae st et e s e e e s eeese et aenseessessaesseenseensesssennees 190
4,436 CDFZEtNUMGALIIDULESeeiieeiiiieiieie ettt ettt ie st estee st etesae st e ssee st enseeseesseensaenseessesssesseensannsenssennees 190
4.4.37 CDFZEtNUMVALIIDULESeeiieeieiieiieie et eitestteieeie st estte st e e ae st esseeseesseenaesseassaenseesseessesseensannsesssennees 191
4.4.38 CDFIMQUITCATLE c.oeiieitietieieeieete st et et et et esteesbeessessaesseesseessessaesseenseenseenseessanseenseenseaseeessenseenseansenseensees 192
4,439 CDFINQUITEATIZENITY ..oooiiiiiiiiiiet ettt sttt s ae st e sae e s e essesseesseanseenseesseesaesseensesnsenssennees 193
4,440 CDFINQUITCATITENIIYoeiieieceiectieie ettt sttt ettt st e ssee s e essesseesseasseenseessenseesseensennsesssesees 194
4441 CDFINQUITEAIZENTIY . .cutiiitiiieiieeiteeteete ettt e et e st e st e e stbeesseeesbeessaeesseeenseessaeenseessseanssesssseensseenes 195
4442 CDFPULAIZENIIY . .ceitiiiiie ettt ettt ettt e et e st eebe e s tbeesaeetbeesseeessseenseesssaesnseesnsaensseensseenssenns 196
4443 CDFPULAIITENIIY .eeeiiiiiiieciie ettt ettt et e et e et e be e stteeeteeessbeesseeassaeensaessaaenseesnseansseesssaenssenns 197
4444 CDFPULAIIZENIIY ..ccitiiiiieciiieeie ettt ettt ettt e et e e tee st e esabeessbeesaeessbeesseeassseesseesssaeenseesnseensseensseenssenns 199
4445 CDEFTE@NAMEATT ...c..eitieitiiie ettt ettt ettt e bt et e bt et e s et e sbe et e e st e et e s st e ebeentees b e eaeesbee bt emneesbeaneenaeas 200
4446 CDFsetAtrgENITYDataSPEC ...ccuviiiiiiiieiiii ettt sttt ettt e et ee et e sateesbeesebeenaneenns 200
4447 CDFSetAtTENTYDAtaSPEC. ...cuiiiiiiiiiieiiieiteeie ettt ettt st ettt ettt st tesabeesateesabeesebeenaneenns 201
4448 CDFSELAMISCOPE ...eeutieiieiiiteie ettt ettt et eib e et e st e st e et e sttt e sut e e bbe e bt e eabtesabeesabeesabeesabeassbeensseansnennns 202
4.4.49 CDFSsetAtIrZENtIYyDataSPec ...cuveeiiiiiiiiiiiiiteeite ettt ettt ettt ettt te st e st e st e beenanee e 203
4.5 QUICK REAA FUNCHIONSviieiiiiiiieciieeiie ettt ettt et ettt e et e e teeetaeetaeestaeebaesbeeesseesasaesnseesaseesnseensnes 204
4.5.1 REAACDIF ...ttt ettt bbbt bt bt et e a et ettt b b sbeebe bt et et et eneen 204
452 ReEadCDFGIODAIAIIDULESceutieiieeeietieteeeteee ettt ettt ettt et sae et s esbe e e ees 207
453 REAACDIEFTINIO ...ttt ettt sttt ettt b e s b et e st e b et e bt e e ebeesbeebeenaeeneeses 208
454 REAACDEFVATIADIE ...ttt ettt et ettt she et et ebae st e sbe e e eaeeneee 209
45.5 REAACDEFVATIADIESeiiiiiieiiiie ettt st et s et sb et e e ebte st sbeeaeeeeenaee 211
4.5.6 ReadCDFVariabIE AIIDULESoouviiiieiieieeteeiies ettt ettt sb ettt s see 212
4.5.7 ReadCDFVariabIeDataccc.eeuieiiiiieiieie ettt sttt ettt ettt sbe et et ebte s sbeeae e e neee 213
458 ReadCDFVariableInfocoooiiiiiiiii ettt et 214
459 REAACDEFVATIADIEScveiiiiiiiiiiiiiestete sttt sttt ettt ettt et eneen 215

4.5.10 ReadCDFVariableSData..........ccccviiiiiviieeiieee et eeeeee e eeee e et eeeeaae e e eaeeeeaaeseeeareeesenneeeeenneeeans 217

5 Interpreting CDF Status Codesccccovveerecrssrnnnecssssansnccsssassncsssssssssssssssssssssssss 219

6 EPOCH Utility ROULINEScceeeerecnnriccsssnnnccssssssnsccsssssssscssssssssssssssssssssssssssssssssss 220

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34

COMPUIEEPOCH ..ottt ettt ettt ettt e sb e et e s bt e e abtesabeeeabeesabeesabeesaeeenateenseas 220
EPOCHDICAKAOWN.......eiieeeiiiieiieie ettt sttt e te st et e s te e et essesseesstanseeaseessanseesseensesnsessseseesseensesnsenses 220
170] 21 TeT0 T4 151 21 o [= USRS 221
ENCOUCEPOCH ...ttt sttt st e et e e st e e ae e bbeesseeestaeasseeassaessseesssaeansaessseessseensseesseeses 221
ENCOACEPOCHT ...ttt ettt st e et e e st e e ae e tbeesseeestbeasseeessaeessaessseeansaessseesssesnsseensseeses 221
ENCOACEPOCHZoiiiiiiiiee ettt ettt e st ee et e st e e ae e bbeesseeenbaeanseeassaessseesssaeansaessseeasseensseensseeses 221
ENCOACEPOCHI ...ttt st et e st eetae e st e e ae et beesseeentbeesseeassaeesseesssaesssaeasseesssaensseesseeses 221
ENCOUCEPOCHA ..ottt ettt et s e et e st e e ae e bbeeaseeeabbeesseeassaeessaesssaeansaeasseessseensseesseenses 222
ENCOUCEPOCHX ...tiiiiiieciiieie ettt ettt ettt e et e e st e e e tbe e s et e e sae e bbeeaseeensaeanseesssaeansaesssaeansaessseesssaenssessseenses 222
TOPATSEEPOCH ...t ettt ettt st st esabe e sat e e st e e sabeesbeeabesebaeenseenane 223
PATSEEPOCH ...ttt ettt eat et e sab e e sht e e bt e e bt e e bteeabeesabbesabaesbeesaneenn 223
PATSEEPOCH T ...ttt ettt e b e s et e e bt e s bt e eabee e bae e bt e eabbeenbeesabeesaneenn 223
PATSEEPOCHZ ...ttt e h et e b e sat e e bt e s bt e ea bt e ebbe ettt enbbeenbeesabeesaneenn 223
PATSEEPOCHS ...ttt sttt e h et e s bt e s at e e bt e s bt e eabeeeabee ettt et beenbeesabeesaneenn 223
PATSEEPOCHA ...ttt sttt ettt e bt e sat e e bt e s bt e ea bt e eabae e bt e eabbeenbeesabeesaneenn 223
COMPULEEPOCH L O......oiiiiieeiieeit ettt ettt et e s te e s et e beeeabeesesaessaeesbeeenseesasseensaesssaesnseessseennsesnsss 224
EPOCH I ODIEAKAOWNcvvieiieeiieeieeeite et e eieeeteesteeeste e bt estaeesteeessaesseeansaesnsaessseessseesnsesssseessseenssesssseensseenes 224
TOENCOACEPOCH L O.......ciiiiieeiiecie ettt ettt ettt et e et e e teeeaseesbeeesseesasaesssessssaansseesssaenseessseenseenne 224
ENCOUCEPOCHIOccvtiiiiieie ettt sttt e st e et e e st e e ae e bbeeeseeestaeesseeassaeesseesssaeansaeasseessseensseenssaeses 225
ENCOACEPOCHIO 1 ..o ettt ettt st et et et st e b e et e et e enbeeaeenbeeteas 225
ENCOACEPOCHIO 2 ..ottt ettt e st e s e e e besseesaeeseensesnseseenseanseensennsenseensenn 225
ENCOACEPOCHIO 3 ..ottt ettt e e et e s e e e e besseesseeseensesnsesseenseanseensenssenseensenn 225
Lo 1<) 2 o O T = 1 T TR 225
ENCOACEPOCH IO X c..iiiieiiieiiciicie ettt ettt ettt et e e ae s se e seenseesesntesseenseensesnseseenseanseensennsenseensenn 226
TOPATSEEPOCH L.ttt sttt st e st e st e st e e sebeesateenbbe e st e ensaeeseenane 226
PATSEEPOCHTO ..ottt ettt e b e sat et e s bt e et e e bee e bt e sabbeenbeesabeesaneens 226
PATSEEPOCHTO 1 ...t ettt ettt s ae et e et eate s bt et es e e teseeeebeemteesbe s e saes 227
PAISEEPOCHTO 2 ...ttt ettt st b ettt eatesbe et es e e eeseee e bt et e enbe e e e 227
PAISEEPOCHIO 3 ...ttt ettt s he et e bttt eatesb et en e e teebee bt enbeenbe e e e 227
PAISEEPOCHIO 4 ...ttt ettt st et e bttt eatesb et es e e teebee s bt ete et s e e 227
EPOCHIOUNTXTIMEvvievieeiieeieeeieeeieeeieesteesteesiteessveesteesseeessaessssaesseesnsaesnsesssseessseesssesssseesssessssesnsseenseennns 227
UNIXTIMEIOEPOCHcooiiieiiiciieeie ettt ettt ettt e e te e esteesabeesabaeessaesssaassseesssaanssessssaenssesseeenseennss 228
EPOCHITOtOUNIXTIMEevteiieeiieie ettt sttt ste e st et eesseessesseesseanseenseensesssesseenseenseansesseesseensesnsennns 228
UniXTIMEIOEPOCH L6coouiiiieieeie ettt ettt ae et e st e se e seeseenseessesaenseanseensanssesaensens 228

7 TT2000 Utility ROULINES ..cuvvveeeerssranrecssssnnnccssssansecss 229

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

COMPULETT2000 ..ottt ettt ettt et e st esat e e bt ettt ettt ebbe e bt e esatesabeeeabeesateesabeesaseanaseensees 229
TT2000DIEAKAOWIL.......evvieieeeie ettt e et e e et e e e et e e et e e e eaaeeeenaeeeeareeeeenneeeeenneeseenneeeann 230
TOENCOAETT2000.... ... o ot e e et e e e et e e e e e e et e e e e e e e eaeeeeenaeeeeeeaseeeeeaneeeensreesenneeeesnnnens 230
ENCOAETT2000 ..ottt e et e e e e e et e e et e e e e e e e e eaeeeeenneeeeenneeeeeeaseeeeesseeeensneesennneeeans 231
TOPATSETT 2000 ..o i ittt e et e e e et e e e e e e e s et e aeeeeessesstareeeeesseesaseseeeeseenraasaresessenarenes 231
PATSETT2000 ...cueiiiiiieiie ettt ecee ettt et e et estte e et e e beessbeessaeesaeeseeessaesaseesssaeanseesasaeasseesssaeasseesssaenssesssseenseennes 232
CDFgetLastDateinLeapSecondSTableccuiiiiiiriiiiiieie ettt et see et e saaeeeaeesaeesteaenseeennas 232
TT2000T0UNIXTIMIE «..vvvvieiieeiiiieeie ettt e e et et e e e e e e aaaeeeeeeeeseataaseeeeeesesaasaeeeeesennsraseeeeeesnesaaneeeeas 232
UnNIXTIMELOTT 2000eeeeeeieieiiieee ettt e e et e e e e e ee et aaeeeeeeesetaaeaeeeeesseesaeseeeeessaesanseeesessennrnnes 232

8 CDF Utility Methods......cccueveerrnensuensaensaensensannsanssncssnsssassssssssssssssssssssssssssssessss 233

8.1
8.2

(01 Q) T (<] 24] £ OO OO RSO OSSPSR 233
CDFetCRecKSUMVAIUE.eiiiieeiieciiieeieeie ettt et e ee e ae et eesa e e s beesseeessaeessbeeassaensaeesseeenseesnsaeanseensses 233

83
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

CDFgetCompressioNTYPEVALUEccivuiiiieiieie ettt sttt ettt ee st e steensees e ensesseeseensessnennees 233
CDFZetDataTYPEVALUC......cecuiiiieiieie ettt et tte st s b et e et e s sae st e sseessesseeeseenseenseesseeseanseenseensesenensean 233
CDFetDECOAINGVAIUCcccuieieiieiiieciiieeie ettt ctteette et e tte et e e beesateeesteesesaessaeessaeesseeessaeansaessseesnseesnseeanseenssas 234
CDFEtENCOAINZVAIUEoocuiiiiiiecieeie ettt ettt e st e e s e e tae e sbeeessaeeataeenseesasaeenseesnsaesnseessas 234
CDFEtFOIMAtVAIUECc.eviiiiieciiece ettt ettt et e et e e st eeeseeessaeesbeesteeensaeenseeanseesaseensseensses 235
CDFZEtMAJOTIEY VAIUC.veeciiieeiiieeie ettt ettt et e et e st e e be e st e e sae e b beeeseeessaeaseesssaeensaesnsaesnseennseessseenssas 235
CDFgetSparseRECOTAVAIUEooeiieiiiiciieie ettt ettt ve e aae e stae e tae e steeessaesntaesnseesnsaesnseensss 235
CDFetStrINZCRECKSUIN ...ecuviiiiieeiiieciiieeteeetteeteette e stee et e s teeesbeessbeessaeesssaesseasseesseesnsseeseessseesnseesssessnsesnnses 235
CDFgetStringCompPreSSIONTYPEeeviriieriieriieieeiieeiieeesteete et et eteestestesseeseenseeaeeseesseenseessenssesseensenssesssensens 236
(01D 3o (e N a1 Fed B 1 71 1) o< USRI 236
(01D 3o (e N a1 Fed B TTeTo T LTSRS 236
CDFGEtSIINZENCOMINGeetieiieie ettt ettt sttt et et e s teste e s e eneeesaesseeseenseessensaenseensennsenssensenn 236
(D) 3o (0 11 Fd 2o 0 18- | SRR STRS 236
(01D 3o (e N a1 Fd Y E2 o1 USRS 236
CDFgetStringSPars€RECOTAviiiuieiiieiiieciiecie ettt ettt et eetbee st e e s te e stbeeaaeebbeesseesasaeenseesnseesnseensses 236
DUMPODIECE ...ttt ettt ettt sttt e et e e bt e saeeessaeetaeeseeessaeesseesssaessseesssaeasseessaeasseessseessenaseeenseennne 237
PrINEDICHIONATY ...t eieeeiie et ettt ettt e et e e sttt e ettt e b eesateestaeesbeesbeeessaeenseesnsaesnsaesasaesssaesnsesnsseessseanssesasseenseennes 237

9 CDF Exception Methodsccuueievcvunicissnnccssnnicsssnnccssnsncssnssssssssessssssssssssssssss 237

9.1
9.2

CDF GELCUITENESTATUS ...eevvveeveeeeiieeteeetieeeteereteestaeeteeesaeesteeessaeasseessseeasseessseanseeensseenssessseenseesssesansessnseensseensses 237
CDF ZEESTATUSIMSE ...eeeuvieeiiieeiieetieeeteeeeteeette e sttt estteesteeessaeesseesssaeesseesnsaaassaessseasseesssaenssesnssaenseesnsaeanseesnsaennseensses 237

Chapter 1
1 Compiling

VB-CDF distribution is packaged in a self-extracting installer. Once the installer is downloaded and run, all distributed
files, i.e., APIs, test programs, batch files, help information and the document, will be placed into a directory of choice,

and environment variables, PATH and CsharpCDFDir, are automatically set. If an older version already exists in the
host machine, the installer will try to remove it before the new one is installed.

To VB, CDF library is unmanaged code distributed in the native DLL. The distributed .DLLs were built from a 32-bit
(x86) Windows and they can be run on a 32-bit Windows via the x86-compatible Common Language Runtime (CLR),
as well as a 64-bit Windows under WOW64.

1.1 Namespaces

Several classes are created for VB applications that facilitate the calls to the native CDF DLL. The CDF namespace
has been set up to include these CDF related classes: CDFConstants, CDFException, CDFAPIs. and CDFUtils.
CDFConstants provides commonly used constants that mimic to those defined in the .DLL CDFException provides the
exception handling when a failed CDF operation is detected. CDFAPIs provide all (static) public (and private) methods
that VB applications can call to interact with the similar, underlining functions provided by the CDF Standard Interface
in the .DLL. CDFUltils provides several small utility tools. These classes are distributed in the form of signed
assemblies , as .DLLs. To facilitate the access to functions in DLL, each VB application must use the “cdf”
namespace in order to call the VB-CDF APIs. The following namespaces should be included by VB applications that

call CDF APIs:
imports System
imports System.Runtime.InteropServices
imports CDF

1.2 Base Classes

CDFAPIs is the main class that provides the VB-CDF APIs. Class CDFAPIs inherits from CDFConstants class, which
defines all constants referenced by the CDF. A VB application, if inheriting from the CDFAPIs class, can call all
CDFAPIs methods and refer CDFConstants’ constants directly, without specifying their class names. CDFException
class inherits from VB’s Exception class and CDFUftils class inherits from CDFConstants class as well, .

1.3 Compiling with Compiler Options

If a test application, e.g., TestCDF.vb, resides in the same directory as all distributed .dll files, the following command
can be used to create an executable

vbc /platform:x86 /r:CDFAPIs.dll,CDFException.dll,
CDFConstants.dl1l,CDFUtils.dll TestCDF.vb

vbc.exe, the VB compiler, can be called automatically from an IDE such as Visual Studio
.NET, or run from the command line if the PATH environment variable is set properly.
vbc.exe can be found in the Windows'’s .NET Framework directory,
<windows>\Microsoft.NET\Framework\v#.# (v#.# as v3.5 or in the latest release version).

/platform:x86 option is required for the Windows running 64-bit OS as VB-CDF is built on an x86 (32-bit) platform.

11

When the VB-CDF package is installed, the PATH environment variable is automatically modified to include the
installation directory so the native CDF .DLL, dlledfesharp.dll , becomes available when a VB application calls CDF
functions. Once the executable, TestCDF.exe, is created, it can be run from any directory.

If the VB applications that call CDF APIs reside in the directories other than the VB-
CDF installation directory, the following compilation command can be used to create an
executable (.exe):

vbc /platform:x86
/1ib:%$CsharpCDFDir%
/r:cdfapis.dll, cdfconstants.dll,cdfexception.dll,cdfutils.dll
TestCDF.vb

where environment variable CsharpCDFDir, the installation directory for VB-CDF package, .is set when the installer is
run.

When the executable is run, an exception of “FileNotFoundException” will be encountered
as CDFAPIs could not be loaded. It’s because the distributed CDF assemblies are
considered private in the .NET environment. The .NET Framework’s runtime, Common
Language Runtime (CLR), will not be able to locate the files if the application resides
in a different directory from the called assemblies. To make these assemblies global so
CLR can locate, they need to be placed in the Global Assembly Cache (GAC) repository. Use the
following steps to do so:

gacutil /i CDFConstants.dll

gacutil /i CDFException.dll

gacutil /i CDFAPIs.dll

gacutil /i CDFUtils.dll

gacutil.exe (Global Assembly Cache utility) is a Microsoft Software Development Kits (SDKs) utility that can
insert, list and remove the assemblies to and from GAC. Gacutil.exe usually can be found at <Program
Files>\Microsoft SDKs\Windows\v#.#\bin (v#.# as v6.0A or in the latest release version). Use “gacutil /u” to remove
assemblies of older versions form GAC.

ildasm.exe is another SDKSs utility that can be used to browse the assemblies for information as versions, keys, etc..

1.4 Sample programs

A couple of sample programs are included for distribution. Qst2vb.vb and Qst2vb2.vb, the quick test programs for
VB. Qst2vb.vb uses the VB value type for data read and write to a CDF file. Qst2vb2.vb passes in the base class
objects for arguments while reading the data from a CDF. Qts2cEpoch.vb , Qst2cEpoch16.vb and Qst2¢TT2000.vb
are three sample programs that show how EPOCH-related functions are used. A batch file, tocompileVB.bat, is
distributed along with the sample programs. Execute it from a Command Prompt window to compile the programs into
executables (.exe). Run totestvb.bat to test the executables to make sure they all work fine.

12

Chapter 2

2 Programming Interface

2.1 Item Referencing

The following sections describe various aspects of the programming interface for VB applications.

For VB applications, all item numbers are referenced starting at zero (0). These include variable, attribute, and
attribute entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables
are numbered starting at zero (0).

2.2 Compatible Types

As VB and CDF .DLL may have different sizes of the same data types, e.g. long, the size compatibility must be
enforced when passing the data between the two. On 32-bit Windows, 4-byte long has been used all over in the CDF
.DLL. However, long in VB is defined as 8-byte. So, to make the size compatible, 4-byte integer is used, instead, in
VB for each long type variable in the .DLL. For CDF data of type CDF_CHAR, or CDF_UCHAR, it is represented by
a string in VB. They are not size compatible, so conversion, performed in the APIs, is needed between a character array
in .DLL and string in VB.

The VB-CDF operations normally involve two variables: the operation status, status, and the CDF identifier, id:
status All VB-CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, return an operation status. This status is defined as an integer in
.DLL and VB. The CDFerror method can be used to inquire the meaning of any
status code. Appendix A lists the possible status codes along with their
explanations. Chapter 5 describes how to interpret status codes.

id An identifier (or handle) for a CDF that must be used when referring to a CDF.
This identifier has a type of long in VB. A new identifier is established whenever a
CDF is created or opened, establishing a connection to that CDF on disk. This long

value is used in all subsequent operations on a particular CDF. The value must not
be altered by an application.

2.3 CDFConstants

CDF defines a set of constants that are used all over the .DLL. These constants are mimicked in CDFConstants class
with compatible data types.

2.4 CDF status

These constants are of same type as the operation status, mentioned in 2.2.
CDF_OK A status code indicating the normal completion of a CDF function.
CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Status less than CDF_OK normally indicate an error. For most cases, an exception will be thrown.

2.5 CDF Formats

SINGLE FILE The CDF consists of only one file. This is the default file format.

13

The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

2.6 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

MULTI FILE

CDF BYTE 1-byte, signed integer.
CDF _CHAR 1-byte, signed character.
CDF _INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF UINT1 1-byte, unsigned integer.
CDF _INT2 2-byte, signed integer.
CDF_UINT2 2-byte, unsigned integer.
CDF _INT4 4-byte, signed integer.
CDF_UINT4 4-byte, unsigned integer.
CDF_INT8 8-byte, signed integer.
CDF REAL4 4-byte, floating point.
CDF_FLOAT 4-byte, floating point.
CDF _REALS 8-byte, floating point.
CDF DOUBLE 8-byte, floating point.
CDF _EPOCH 8-byte, floating point.

CDF _EPOCHI16 two 8-byte, floating point.

CDF TIME TT2000 8-byte, signed integer.

The following table depicts the equivalent data type between the CDF and VB:

CDF Data Type VB Data Type
CDF BYTE sbyte
CDF_INTI1 sbyte
CDF_UINT!1 byte
CDF_INT2 short
CDF_UINT2 ushort
CDF _INT4 integer
CDF_UINT4 uinteger
CDF_INT8 long
CDF REALA4 single
CDF _FLOAT single
CDF REALS double
CDF _DOUBLE double

CDF_EPOCH double

CDF_EPOCH16 double(2)!
CDF TIME TT20001 long
CDF_CHAR string
CDF_UCHAR string

CDF_CHAR and CDF _UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (representing the length of the string, where each element is

a character).

NOTE: Keep in mind that an long is 8 bytes and that an integer is 4 bytes. Use integer for CDF data types CDF INT4
and CDF_UINTH4, rather than long. Use long for CDF INT8 and CDF _TIME TT2000 data types.

2.7 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING

NETWORK ENCODING

VAX ENCODING

ALPHAVMSd ENCODING

ALPHAVMSg ENCODING

ALPHAVMSi ENCODING

ALPHAOSF1_ENCODING
SUN_ENCODING
SGi_ENCODING

DECSTATION_ENCODING

IBMRS ENCODING
HP ENCODING

IBMPC_ENCODING

Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G _FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.
Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.

Indicates DECstation data representation.
Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).

Indicates PC data representation.

"' CDF_EPOCHI16 has two doubles, which corresponds to an array as double() in VB.

15

NeXT _ENCODING
MAC_ENCODING
ARM_LITTLE_ENCODING

ARM _BIG_ENCODING

Indicates NeXT data representation.
Indicates Macintosh data representation.
Indicates ARM architecture running little-endian data representation.

Indicates ARM architecture running big-endian data representation.

[A64VMSi ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.
[A64VMSd _ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D _FLOAT
representation.
[A64VMSg ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

When creating a CDF (via CDFcreate) or respecifying a CDF's encoding (via CDFsetEncoding), you may specify any
of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect as specifying
HOST ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST ENCODING is never returned.)

2.8 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK DECODING Indicates network transportable data representation (XDR).

VAX DECODING Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D FLOAT
representation.

ALPHAVMSd DECODING

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G _FLOAT
representation.

ALPHAVMSi DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING

SUN_DECODING

Indicates DEC Alpha running OSF/1 data representation.

Indicates SUN data representation.

16

SGi DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ DECODING Indicates DECstation data representation.

IBMRS DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP DECODING Indicates HP data representation (HP 9000 series).

IBMPC DECODING Indicates PC data representation.

NeXT DECODING Indicates NeXT data representation.

MAC DECODING Indicates Macintosh data representation.

ARM _LITTLE DECODING Indicates ARM architecture running little-endian data representation.

ARM_BIG DECODING Indicates ARM architecture running big-endian data representation.

[A64VMSi DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

[A64VMSd DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D _FLOAT
representation.

[A64VMSg DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

The default decoding is HOST DECODING. The other decodings may be selected via the CDFsetDecoding method.
The Concepts chapter in the CDF User's Guide describes those situations in which a decoding other than
HOST DECODING may be desired.

2.9 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAIJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the

17

CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional

arrays varies the slowest in memory.

2.10 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY

NOVARY

True record or dimension variance.

False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the

same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

2.11 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available types, GZIP provides the best result.

NO_COMPRESSION

RLE_COMPRESSION

HUFF_COMPRESSION

AHUFF_COMPRESSION

GZIP_COMPRESSION

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE_OF ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING_TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL _ENCODING_TREES.

Gnu's “zip" compression.> There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most

2 Disabled for PC running 16-bit DOS/Windows 3.x.

18

compression but require the most execution time. Values in-between
provide varying compromises of these two extremes. 6 normally
provides a better balance between compression and execution.

2.12 Sparseness

2.12.1 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when

reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

2.12.2 Sparse Arrays

The following types of sparse arrays for variables are supported.’

NO_SPARSEARRAYS No sparse arrays.

Note: sparse array is not supported and will not be implemented.

2.13 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).
VARIABLE SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

2.14 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via CDFsetReadOnlyMode method. When read-only
mode is set, all metadata is read into memory for future reference. This improves overall metadata access performance
but is extra overhead if metadata is not needed. Note that if the CDF is modified while not in read-only mode,
subsequently setting read-only mode in the same session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLY off Turns off read-only mode.

3 Obviously, sparse arrays are not yet supported.

19

2.15 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected via CDFsetzMode method.

zMODEoff Turns off zMode.
zMODEonl1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

2.16 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via CDFsetNegtoPosfpOMode method.

NEGtoPOSfpOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfp0off Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.17 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

2.18 Limits of Names and Other Character Strings

CDF_PATHNAME LEN Maximum length of a CDF file name. A CDF file name may contain disk
and directory specifications that conform to the conventions of the
operating systems being used (including logical names on OpenVMS
systems and environment variables on UNIX systems).

CDF_ VAR NAME LEN256 Maximum length of a variable name.

CDF_ATTR NAME LEN256 Maximum length of an attribute name.

CDF _COPYRIGHT LEN Maximum length of the CDF Copyright text.

CDF _STATUSTEXT LEN Maximum length of the explanation text for a status code.

2.19 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A method,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is

20

created (i.e. CDFcreateCDF). This method takes an argument to control the backward file compatibility. Passing a
flag value of BACKWARDFILEon, defined in CDFConstants, to the method will cause new files being created to
be backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.7/V2.6 library. If this option is specified, the maximum
file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation mode
and newly created files will not be backward compatible with older libraries. The created files are of version 3.* and
thus their file sizes can be greater than 2G bytes. Not calling this method has the same effect of calling the method
with an argument value of BACKWARDFILEoff.

The following example creates two CDF files: “MY_ TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

dim id1 as long, id2 as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFcreateCDF(“MY_TEST1”, id1)

CDFsetFileBackward(BACKWARDFILEon)
status = CDFCreateCDF(“MY_TEST2”, id2)

catch ex as Exception

end try

Another method is through an environment variable and no method call is needed (and thus no code change involved in
any existing applications). The environment variable, CDF_FILEBACKWARD on Windows, is used to control the
CDF file backward compatibility. If its value is set to “TRUE”, all new CDF files are backward compatible with CDF
V2.7 and 2.6. This applies to any applications or CDF tools dealing with creation of new CDFs. If this environment
variable is not set, or its value is set to anything other than “TRUE”, any files created will be of the CDF 3.* version
and these files are not backward compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
method call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward method to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

dim flag as integer ¢ Returned status code.

flag = CDFgetFileBackward()

2.20 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

21

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: NO_CHECKSUM and MD5_CHECKSUM, both defined in CDFConstants class. With MD5 CHECKSUM, the
MDS algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the method call with a proper checksum
mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included as
part of the standard CDF distribution package) can be used for adding or removing the checksum bit. Through the
Interface call, you can set the checksum mode for both new or existing CDF files while the environment variable
method only allows to set the checksum mode for new files.

The environment variable CDF_CHECKSUM on Windows is used to control the checksum option. If its value is set
to “MDS5”, all new CDF files will have their checksum bit set with a signature message produced by the MDS5

algorithm. If the environment variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.

Dim id1 as long, id2 as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim checksum as integer ¢ Checksum code.

status = CDFCreateCDF(“MY _TEST1”, id1)

status = CDFsetChecksum (id1, MD35_CHECKSUM)
.status = CDFclose(id1)

.status = CDFopen(“MY_TEST2”, id2)

.status = CDFsetChecksum (id2, NO_CHECKSUM)

status = CDFclose(id2)

2.21 Data Validation

To ensure the data integrity of CDF files and secure operation of CDF-based applications, a data validation feature has
been added to the CDF opening logic. This process, as the default, performs sanity checks on the data fields in the
CDF's internal data structures to make sure that the values are within valid ranges and consistent with the defined
values/types/entries. It also ensures that the variable and attribute associations within the file are valid. Any
compromised CDF files, if not validated properly, could cause applications to function unexpectedly, e.g.,
segmentation fault due to a buffer overflow. The main purpose of this feature is to safeguard the CDF operations, catch
any bad data in the file and end the application gracefully if any bad data is identified. Using this feature, in most
cases, will slow down the file opening process especially for large or very fragmented files. Therefore, it is
recommended that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may
need a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the

22

cdfconvert tool program in the CDF User’s Guide for further information. *

This validation feature is controlled by setting/unsetting the environment variable CDF_VALIDATE on Windows is
not set or set to “yes”, all CDF files are subjected to the data validation process. If the environment variable is set to
“no”, then no validation is performed. The environment variable can be set at logon or through the command line,
which goes into effect during a terminal session, or within an application, which is good only while the application is
running. Setting the environment variable, using C method CDFsetValidate, at application level will overwrite the
setup from the command line. The validation is set to be on when VALIDATEFILEon is passed in as an argument.
VALIDATEFILEoff will turn off the validation. The function, CDFgetValidate,will return the validation mode, 1
(one) means data being validated, 0 (zero) otherwise. If the environment variable is not set, the default is to validate the
CDF file upon opening.

The following example sets the data validation on when the CDF file, “TEST”, is open.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

CDFsetValidate (VALIDATEFILEon)
status = CDFopen(“TEST”, id)

The following example turns off the data validation when the CDF file, “TEST” is open.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

CDFsetValidate (VALIDATEFILEoff)
status = CDFopen(“TEST”, id)

2.22 8-Byte Integer

Both data types of CDF _INT8 and CDF TIME TT2000 use 8-byes signed integer. VB’s “long” type is the one that
matches to these two types.

2.23 Leap Seconds

CDF’s CDF_TIME_TT2000 is the epoch value in nanoseconds since J2000 (2000-01-01T12:00:00.000000000) with
leap seconds included. The CDF uses an external or internal table for computing the leap seconds. The external table, if
present and properly pointed to by a predefined environment variable, will be used over the internal one. When the VB
package is installed, the external table and environment variables are set so it can be used. If the external table is
deleted or no longer pointed by the environment variable, the internal, hard-coded table in the library is used. When a
new leap second is added, if the external table is updated accordingly, then the software does not need to be upgraded.
Refer to CDF User’s Guide for leap seconds.

A tool program, CDFleapsecondsInfo distributed with the CDFpackage, will show how the table is referred and when
the last leap second was added. Optionally, it can dump the table contents.

4 The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

23

Chapter 3

3 Understanding the Application
Interface

This chapter provides some basic information about the VB‘s Application Interfaces (APIs) to CDF, and the native
CDF .DLL The following chapter will describe each API in detail.

3.1 Arguments Passing

Each CDF API has a sequence of parameters, which define the set of arguments that must be provided for that method
in VB applications. Being a strongly typed language, VB’s APIs to CDF follow the same rules for the parameters.
Arguments for APIs that perform CDF data get, put or inquire operations are required to have the signatures of the
defined VB value/string type or basic Object classes.

The input parameters in APIs for the CDF identifier, variable number, attribute number, entry number, record
number, record counts and record indices, etc, are always of fixed types. They must be a scalar of type long for
CDF identifier, integer for variable/attribute/entry number and record number/count, or an array of integers, integer(),
for variable dimensional sizes/variances and record data indices, counts and intervals. The output parameters must be
in either of the defined type or the VB base Object class. For example, for a returned data of type integer, the passing
argument in the calling application can be either a defined integer variable, or a variable of object class. Compilation
error will occur if any one of the such arguments from the applications does not match to that defined in the API.

A CDF identifier, when a CDF is open or created, is presented as a long variable, even in the underlying C# and CDF
native library it is a pointer.

For example, CDFsetEncoding and CDFgetEncoding are used to set and get the data encoding of a CDF. Both APIs
take two parameters, the CDF identifier, always a long, and the encoding, an integer. CDFsetEncoding take both
parameters from applications for input, while CDFgetEncoding has the CDF identifier as input and the encoding for
output. The following code shows how these methods can be used.

To set a CDF’s encoding,
dim status as integer
dim id as long

dim encoding as integer

encoding = IBMPC_ENCODING
status = CDFsetEncoding(id, encoding)

The CDF identifier, id, is set when a CDF is open or created. The encoding is set to PC encoding, defined in
CDFConstants class.

Similarly, to get the CDF’s encoding:

status = CDFgetEncoding(id, encoding)

APIs that read or write CDF data, either variable’s data (and their pad value) or metadata, are flexible when dealing
with data of different pre-defined CDF types, e.g., CDF INTI1, CDF UINT1, CDF FLOAT, CDF _CHAR,

CDF_EPOCH, etc. To pass the data value(s) to the APIs, one of the following forms can be used, depending on the
data type: VB numeric type or string in a scalar or array or simply the VB base object class. String or an array of

24

strings involves data of CDF_CHAR or CDF_UCHAR type. As VB’s character/string has a different characteristic
from the ASCII-based code in the CDF native DLL library, some manipulations are performed by the APIs when
dealing with such data. VB objects can be used, as a general form for all data value(s), when reading/writing data from
CDF. The called APIs will handle the passed object and map it to its corresponding CDF data type. Type casting the
objects returned by the APIs may be needed.

For example, methods: CDFputzVarData and CDFgetzVarData are used to write and read a single data value for an
zVariable in a CDF. Both take five parameters. The first four, the CDF identifier, variable number, record number and
indices, are for input and of fixed types of: long, integer, integer and an array of integers (integer()), respectively.
The last parameter is for data value, as an input for CDFputzVarData or an output for CDFgetzVarData. To call
CDFputzVarData, the data value has to be defined to match to variable’s underlying data type and given a value. It is
passed in as is. To retrieve the data by CDFgetzVarData, just specifies the variable with a proper data type and pass in
to the API.

The following samples show how these arguments are set up to write a data value to record 1, indices (1,1) for
zVariable, “zVarl”, a 2-dimentional of CDF_INT?2.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim indices() as integer = {1,1}
dim value as short = 100

varNum = CDFvarNum (id, “zVarl”)
status = CDFputzVarData(id, varNum, recNum, indices, value)

To read the data value the same variable at the same record and indices:
dim value as short

'séltus = CDFgetzVarData(id, varNum, recNum, indices, value)
Similarly, value can be defined as a VB base object:

Dim valueo as object
status = CDFgetzVarData(id, varNum, recNum, indices, valueo)

Either use such statement:
Dim value as short = valueo

Or, use a proper type casting method, such as CType or DirectCast for a scalar, to make it a value type after the object
is returned. For object of an array, just assign it to a properly type-defined, dimensional variable.

dim value as short = Ctype(valueo, short)

APIs that handle multiple data values reads and writes, e.g., CDFputzVarRecordData and
CDFgetzVarRecordData for writing and reading a full data record an zVariable, are similar. They both take four
parameters: the first three, as input, are the CDF identifier, variable number, record number of the fixed types of long,
integer and integer, respectively, and the last one is the data values, input for CDFputzVarRecordData or output for
CDFgetzVarRecordData. The data values have to be defined (and assigned for input), according to the variable’s
underlying data type, and passed in as is.

25

The following samples show how the arguments are set in CDFputzVarRecordData to write the full record 1 for
zVariable, “zVarl”, a 2-dim (2,3) of type short. The first one passes the data value object as is, while the second one
uses a pointer to the data values.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim values(,) as short = {{1,2,3},{11,12,13}}

varNum = CDFvarNum (id, “zVarl”)
status = CDFputzVarRecordData(id, varNum, recNum, values)

For CDFgetzVarRecordData to read back the same variable’s record data, one can use the same arguments as
CDFputzVarRecordData.

dim id as long

dim varNum as integer
dim recNum as integer = 1
dim values (,) as short

varNum = CDFvarNum (id, “zVarl”)
status = CDFgetzVarRecordData(id, varNum, recNum, values)

Console.WriteLine(*“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2),
values(1.0),values(1.1), values(1.2))

Alternatively, use a base object for the output:
dim valueso as object

status = CDFgetzVarRecordData(id, varNum, recNum, valueso)

dim values(,) as short = valueo

Console.WriteLine(*“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2),
values(1.0),values(1.1), values(1.2))

3.2 Multi-Dimensional Arrays

For data involved multidimensional arrays, CDF’s native .DLL data structure is equivalent to the rectangular array in
VB. Multidimensional arrays of jagged type are not supported by APIs. An extra dimension is added to the retrieved
data if the operations involve multiple records. For example, to read two full records from a variable of two-
dimensions, 3-by-4 by the hyper get method, the returned will be a three-dimensional, 2-by-3-by-4, object. Conversely,
if the hyper read skips certain dimension(s) from an operation, the returned object’s dimensionality will be reduced
accordingly. For example, to read a row or column from a variable’s two-dimensional record, the returned will be a
single array of either column or row count.

3.3 Data Type Equivalent

The following list shows the data types used by CDF and their corresponding types in VB:
e CDF INTI1 sbyte

CDF_INT2 short

CDF_INT4 int

CDF_INT8 long

26

CDF_UINTI byte

CDF_UINT2 ushort

CDF_UINT4 uint

CDF BYTE sbyte

CDF REAL single

CDF _FLOAT single

CDF _DOUBLE double

CDF REAL8 double

CDF EPOCH double

CDF _EPOCHI16 double(2)
CDF_TIME_TT2000 long
CDF_CHAR string (with manipulation)
CDF _UCHAR string (with manipulation)

3.4 Fixed Statement

Fixed statement is required to pin VB managed data objects, mainly arrays of numeric data, so that pointers of the
objects can be safely used and passed to the CDF APIs. By doing so, the objects’ addresses in the heap won’t be moved
around by the garbage collector during the operation.

For example, CDFhyperGetzVarData method can be called to retrieve a number of data values for a zVariable. For
instance, the following application code can be used to read the first four (4) records from a zVariable of 2-dim (2,3) of
type CDF _INT4. The declared data buffer, a 3-dimensional of int, is blocked in the fixed statement when the call is
made.

dim id as long

dim status as integer

dim varNum as integer

dim recNum as integer = 0, recCount as integer = 4, recInterval as integer = 1

dim indices() as integer = {0, 0}

dim counts() as integer = {2, 3}

dim intervals() as integer = {1,1}

dim data(4,2,3) as integer ¢ Dimension: record number, row, column

status = CDFhyperGetzVarData (id, varNum, recNum, recCount, reclnterval, indices, counts, intervals, data)

3.5 Exception Handling

Except a few APIs, each call to a CDF method will return an operation status. If the status is abnormal, less than
CDF_OK, an exception might be thrown. It is recommended that the code for the CDF-based application be surrounded
by a try-catch block so an exception can be caught and handled. The methods to check the existence of a CDF entity,
e.g., entry, attribute, variable, will not throw exception if that entity is not in the CDF. The returned, informational
status will reflect so. Once an exception is thrown, the thrown object, if initiated from the CDF APIs, is a
CDFException class object. There are a couple of class methods, GetCurrentStatus and GetStatusMsg ,which can be
used to acquire the status when an exception is thrown and the descriptive information about that exception.

dim id as long
dim status as integer
dim encoding as integer

try
status = CDFopen(“TEST”, id)

27

status = CDFgetEncoding(id, encoding)

status = CDFclose(id)
catch ex as Exception
Console.WriteLine(“Exception: “+ex.toString())
Or,
dim status] as integer = ex.GetCurrentStatus()
Console.WriteLine(“Exception: “+ex.GetStatusMsg(status1))

}

3.6 Dimensional Limitations

The VB to CDF APIs follow the same dimensional restriction as in the CDF native DLL: a limit of ten (10) dimensions
a CDF variable’s numeric typed data record can have. For string typed data, represented in a CDF file with
CDF _CHAR or CDF_UCHAR type, a limit of four (4) dimensions is applied.

28

Chapter 4
4 Application Interface

This chapter covers all Application Interfaces (APIs) that VB applications can call to interact with CDF. Since C# APIs
to CDF had already been developed, they are the base for all .Net Framework applications for CDF. Pointers are used
extensively for passing the data, e.g., CDF identifier as void *, between C# applications, C# APIs and CDF native
DLL. Such pointer-based functions are hard to handle in VB application. For that, a new set of APIs is added to C#
APIs suite to specifically allow VB applications to use C# functions without the use of pointers.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The description for each API will detail its parameters: their types, for input or output and what the method returns.
APIs that handle read/write of variable data and attribute entry may use a special indicator: TYPE, to specify the
parameters that can have different signatures. The acceptable data types for such method are specified. For example,
CDFgetzVarData method, returning a single zVariable value, is described as:
integer CDFgetEncoding (out -- Completion status code.
id as long, “ in-- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ‘¢ out -- Data value.
‘ TYPE -- VB value/string type or object

TYPE, as specified, can be defined a VB value or string (matching to the variable’s underlying data type) or simply a
VB base Object. The following sample shows how the API is used to retrieve a data value from the zVariable
“my_var”, a 2-dimensional, CDF_INT4 type at indices of {1,1} for record 1:

dim status as integer

dim indices() as integer = {1, 1}

dim id as long

dim value as integer

status = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

Alternatively, value can be defined as object:
dim value as object

status = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

APIs are grouped, based on the CDF entities they operate on. These groups consist of general library information, CDF
as a whole, variable and attribute/entry.

29

4.1 Library Information

The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information such as the current library version number and Copyright notice.

4.1.1 CDFgetDataTypeSize

integer CDFgetDataTypeSize (out -- Completion status code.
dataType as integer, ‘ in-- CDF data type.
numBytes as integer) ¢ out -- # of bytes for the given type.

3

CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.
The arguments to CDFgetDataTypeSize are defined as follows:
dataType The CDF supported data type.

numBytes The size of dataType.

4.1.1.1. Example(s)
The following example returns the size of the data type CDF_INT4 that is 4 bytes.

dim status as integer ¢ Returned status code.
Dim numBytes as integer ¢ Number of bytes.
try

status = CDFgetDataTypeSize(CDF_INT4, &numBytes)

catch ex as Exception
end try

4.1.2 CDFgetLibraryCopyright

integer CDFgetLibraryCopyright (
copyright as string)

13

out -- Completion status code.
out -- Library copyright.

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.
The arguments to CDFgetLibraryCopyright are defined as follows:

copyright The Copyright notice.

4.1.2.1. Example(s)
The following example returns the Copyright of the CDF library being used.

dim status as integer ¢ Returned status code.
Dim copyright as string ¢ CDF library copyright.

30

try

status = CDFgetLibraryCopyright(copyright)

catch ex as Exception
end try

4.1.3 CDFgetLibraryVersion

integer CDFgetLibraryVersion (¢ out -- Completion status code.
version as integer, ¢ out -- Library version.

release as integer, ¢ out -- Library release.
increment as integer, ¢ out -- Library increment.
subIncrement as string) ¢ out -- Library sub-increment.

CDFgetLibraryVersion returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

version The library version number.

release The library release number.

increment The library incremental number.

subIncrement The library sub-incremental string, a single character.

4.1.3.1. Example(s)

The following example returns the version and release information of the CDF library that is being used.

dim status as integer ‘ Returned status code.

Dim version as integer CDF library version number.

Dim release as integer CDF library release number.

Dim increment as integer CDF library incremental number.

Dim subIncrement as string CDF library sub-incremental character.

3
13

13

try
status = CDFgetLibraryVersion(version, release, increment, sublncrement)
catch ex as Exception
end try
4.14 CDFgetStatusText

dim varNum as integer CDFgetStatusText(
status as integer,
message as string)

3

out -- Completion status code.
in -- The status code.
out -- The status text description.

3

3

31

CDFgetStatusText is identical to CDFerror, a legacy CDF function, (see section 4.2.8), and the use of this method is
strongly encouraged over CDFerror as it might not be supported in the future. This method is used to inquire the text
explanation of a given status code. Chapter 5 explains how to interpret status codes and Appendix A lists all of the
possible status codes.
The arguments to CDFgetStatusText are defined as follows:

status The status code to check.

message The explanation of the status code.

4.1.4.1. Example(s)

The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopenCDF ("giss_wetl", id)
status = CDFclose(id)
catch ex as Exception

text = CDFgetStatusMsg(ex.CDFgetCurrentStatus()) ...
end try

4.2 CDF

The functions in this section provide CDF file-specific operations. Any operations involving variables or attributes are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

4.2.1 CDFclose

Integer CDFclose(‘¢ out -- Completion status code.
id as long) “ in-- CDF identifier.

CDFclose closes the specified CDF. The CDF's cache buffers are flushed the CDF's open file is closed (or files in the
case of a multi-file CDF) and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

32

4.2.1.1. Example(s)

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFopen(“...”, id)
status = CDFclose (id)
catch ex as Exception

end try
422 CDFcloseCDF

Integer CDFcloseCDF (‘¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFcloseCDF closes the specified CDF. This method is identical to CDFclose, a legacy CDF function. The use of this
method is strongly encouraged over CDFclose as it might not be supported in the future. The CDF's cache buffers are
flushed the CDF's open file is closed (or files in the case of a multi-file CDF) and the CDF identifier is made available
for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

4.2.2.1. Example(s)

The following example will close an open CDF.

dim id as long * CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFopenCDF ("giss_wetl", id)

status = CDFcloseCDF (id)
catch ex as Exception

end try

33

4.2.3 CDFcreate

Integer CDFcreate(¢ out -- Completion status

CDFname as string, ¢ in -- CDF file name.

numDims as integer, in -- Number of dimensions, rVariables.
dimSizes as integer(), in -- Dimension sizes, rVariables.
encoding as integer, in -- Data encoding.

majority as integer, in -- Variable majority.

id as long) ¢ out-- CDF identifier.

CDFcreate, a legacy CDF function, creates a CDF as defined by the arguments. A CDF cannot be created if it already
exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it
with CDFopenCDF, delete it with CDFdeleteCDF, and then recreate it with CDFcreate. If the existing CDF is
corrupted, the call to CDFopen will fail. (An error code will be returned.) In this case you must delete the CDF at the
command line. Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all
of the variable files (having extensions of .v0,.v1,. .. and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

numDims Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_ MAX DIMS.

dimSizes The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this
argument is ignored (but must be present).

encoding The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.7.

majority The majority for variable data. Specify one of the majorities described in Section 2.9.
id Identifier for the created CDF. This identifier must be used in all subsequent operations on
the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

4.2.3.1. Example(s)

The following example creates a CDF named “testl.cdf” with network encoding and row majority.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

dim numDims as integer = 3 Number of dimensions, rVariables.
Dim dimSizes() as integer = {180,360,10} ¢ Dimension sizes, rVariables.

3

34

dim majority as integer = ROW_MAJOR ¢ Variable majority.
try

status = CDFcreate ("testl", numDims, dimSizes, NETWORK ENCODING, majority, id)
catch ex as Exception
end try

4.2.4 CDFcreateCDF

Integer CDFcreateCDF(¢ out -- Completion status code.
cdfName as string, ¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFcreateCDF creates a CDF file. This method is a simple form of CDFcreate without the number of dimensions,
dimensional sizes, encoding and majority arguments. It is the better method if only zVariables are to be created in the
CDF. The created CDF will use the default encoding (HOST ENCODING) and majority (ROW_MAIJOR). A CDF
cannot be created if it already exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing
CDF, you can either manually delete the file or open it with CDFopenCDF ,delete it with CDFdeleteCDF, and then
recreate it with CDFcreateCDF. If the existing CDF is corrupted, the call to CDFopenCDF will fail. (An error code
will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file (having an
extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions of .v0,.v1,.
..and .z0,.z1,.. .).

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 3 for the differences between
rVariables and zVariables.

The arguments to CDFcreateCDF are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the created CDF. This identifier must be used in all subsequent operations on
the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this

default.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.4.1. Example(s)

The following example creates a CDF named “testl.cdf” with the default encoding and majority.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.

35

try
status = CDFcreateCDF ("testl", id)
status = CDFclose (id)

catch ex as Exception

end try

4.2.5 CDFdelete

integer CDFdelete(¢ out -- Completion status code.
id as long) “ in-- CDF identifier.

CDFdelete, a legacy CDF function, deletes the specified CDF. The CDF files deleted include the dotCDF file (having
an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.5.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
try

status = CDFopen ("test2", id)
status = CDFdelete (id)

catch ex as Exception
end try

4.2.6 CDFdeleteCDF

integer CDFdeleteCDF(¢ out -- Completion status code.
id as long) “ in-- CDF identifier.

CDFdeleteCDF deletes the specified CDF. This method is identical to CDFdelete, and the use of this method is
strongly encouraged over CDFdelete as it might not be supported in the future. The CDF files deleted include the
dotCDF file (having an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . .
and .z0,.z1,.. .).

36

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.6.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFopenCDF ("test2", id)
status = CDFdeleteCDF(id)
catch ex as Exception

end try

4.2.7 CDFdoc

integer CDFdoc(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

version as integer, ‘ out-- Version number.
release as integer, out -- Release number.
copyright as string) out -- copyright.

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF copyright notice. The copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.
release The release number of the CDF library that created the CDF.
copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

4.2.7.1. Example(s)

The following example returns and displays the version/release and copyright notice.

37

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.

Dim version as integer CDF version number.
Dim release as integer CDF release number.
Dim copyright as string Copyright notice.

3
3

3

:Lry
s't:a't'us = CDFdoc (id, version, release, copyright)
;:atch ex as Exception
end try
4.2.8 CDFerror’

integer CDFerror(
status as integer,
message as string)

3

out -- Completion status code.
in -- Status code.
out -- Explanation text.

3

3

CDFerror, a legacy CDF function, is used to inquire the explanation of a given status code (not just error codes).
Chapter 5 explains how to interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:
status The status code to check.

message The explanation of the status code.

4.2.8.1. Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopen ("giss wetl", id)

catch ex as Exception
dim status as integer] = CDFerror(ex.GetCurrentStatus(), out text) ...
end try

4.2.9 CDFgetCacheSize

integer CDFgetCacheSize (out -- Completion status code.
id as long, ¢ in -- CDF identifier.

3

5 A legacy CDF function. While it is still available in V3.1, CDFgetStatusText is the preferred function for it.

38

numBuffers as integer) out-- CDF’s cache buffers.

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF
(or CDFcreate) or CDFopen.

numBuffers Number of cache buffers.

4.2.9.1. Example(s)
The following example returns the cache buffers for the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim numBuffers as integer ¢ CDF’s cache buffers.
try

status = CDFgetCacheSize (id, numBuffers)

catch ex as Exception
end try

4.2.10 CDFgetChecksum

integer CDFgetChecksum (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
checksum as integer) ¢ out-- CDF’s

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.20.
The arguments to CDFgetChecksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF
(or CDFcreate) or CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

4.2.10.1. Example(s)

The following example returns the checksum code for the open CDF file.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim checksum as integer ¢ CDF’s checksum.

39

try

status = CDFgetChecksum (id, checksum)

catch ex as Exception
end try

4.2.11 CDFgetCompression

integer CDFgetCompression (out -- Completion status code.
id as long, “ in-- CDF identifier.
compressionType as integer, out -- CDF’s compression type.
compressionParms as integer(), out -- Compression parameters.
compressionPercentage as integer) out -- Compressed percentage.

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression rate. CDF compression types/parameters are described in
Section 2.11. The compression percentage is the result of the compressed file size divided by its original, uncompressed
file size.®

The arguments to CDFgetCompression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionType The type of the compression.
compressionParms The parameters of the compression.

compressionPercentage The compression rate.

4.2.11.1. Example(s)

The following example returns the compression information of the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim compressType as integer CDF’s compression type.
Dim compressionParms() as integer Compression parameters.
dim compressionPercentage as integer Compression rate.

3
13

try
status = CDFgetCompression (id, compression, compressionParms, compressionPercentage)

catch ex as Exception

% The compression ratio is (100 — compression percentage): the lower the compression percentage, the better the
compression ratio.

40

end try

4.2.12 CDFgetCompressionCacheSize

integer CDFgetCompressionCacheSize (out -- Completion status code.
id as long, “ in-- CDF identifier.
numBuffers as integer) ¢ out -- CDF’s compressed cache buffers.

3

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCompressionCacheSize are defined as follows:

Id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.
numBuffers Number of cache buffers.

4.2.12.1. Example(s)

The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim numBuffers as integer ¢ Compression cache buffers.
try

status = CDFgetCompressionCacheSize (id, numBuffers)

catch ex as Exception
end try

4.2.13 CDFgetCompressionInfo

integer CDFgetCompressionInfo (
CDFname as string,

compType as integer,

cParms.as integer()

cSize as long.

uSize as long).

out -- Completion status code.
in -- CDF name.

out -- CDF compression type.
out -- Compression parameters.
out -- CDF compressed size.
out -- CDF uncompressed size.

CDFgetCompressionInfo returns the compression type/parameters of a CDF without having to open the CDF. This
refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.
compType The CDF compression type.
cParms The CDF compression parameters.

41

cSize The compressed CDF file size.

uSize The size of CDF when decompress the originally compressed CDF.

4.2.13.1. Example(s)

The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

dim status as integer Returned status code.

dim compType as integer ¢ Compression type.

dim cParms as integer() ¢ Compression parameters.
Dim cSize as long ¢ Compressed file size.
Dim uSize as long ¢ Decompressed file size.
try

status = CDFgetCompressionInfo(*MY_TEST”, compType, cParms, cSize, uSize)

catch ex as Exception
end try

4.2.14 CDFgetCopyright

integer CDFgetCopyright (out -- Completion status code.
id as long, “ in-- CDF identifier.
copyright as string) ¢ out -- Copyright notice.
CDFgetCopyright gets the Copyright notice in a CDF.

The arguments to CDFgetCopyright are defined as follows:

3

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

copyright CDF Copyright.

4.2.14.1. Example(s)
The following example returns the Copyright in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim copyright as string ¢ CDF’s copyright.

try

status = CDFgetCopyright (id, copyright)

catch ex as Exception

42

end try

4.2.15 CDFgetDecoding

integer CDFgetDecoding (out -- Completion status code.
id as long, “ in-- CDF identifier.
decoding as integer) ¢ out -- CDF decoding.

3

CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 2.8.
The arguments to CDFgetDecoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of the CDF.

4.2.15.1. Example(s)
The following example returns the decoding for the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim decoding as integer ¢ Decoding.

try

status = CDFgetDecoding(id, decoding)

catch ex as Exception
end try

4.2.16 CDFgetEncoding

integer CDFgetEncoding (out -- Completion status code.
id as long, “ in-- CDF identifier.
encoding as integer) ¢ out -- CDF encoding.

3

CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 2.7.
The arguments to CDFgetEncoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.16.1. Example(s)

The following example returns the data encoding used for the given CDF.

43

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim encoding as integer ¢ Encoding.
try

status = CDFgetEncoding(id, encoding)

catch ex as Exception
end try
4.2.17 CDFgetFileBackward
integer CDFgetFileBackward() ¢ out — File Backward Mode.

CDFgetFileBackward returns the backward mode information dealing with the creation of a new CDF file. A mode of
value 1 indicates when a new CDF file is created, it will be a backward version of V2.7, not the current library version.

The arguments to CDFgetFileBackward are defined as follows:

N/A

4.2.17.1. Example(s)

In the following example, the CDF’s file backward mode is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim mode as integer ¢ Backward mode.

try

mode = CDFgetFileBackward ()
if mode = 1 then

end if
catch ex as Exception
end try

4.2.18 CDFgetFormat

integer CDFgetFormat (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
format as integer) ¢ out -- CDF format.

CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 2.5.

44

The arguments to CDFgetFormat are defined as follows:
id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

4.2.18.1. Example(s)
The following example returns the file format of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim format as integer ¢ Format.

try

status = CDFgetFormat(id, format)

catch ex as Exception
end try

4.2.19 CDFgetLeapSecondLastUpdated

integer CDFgetLeapSecondLastUpdated (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
lastUpdated as integer) ¢ out -- CDF format.

CDFgetLeapSecondLastUpdated returns the leap second last updated date from the CDF. This value indicates what/if
the leap second table this CDF is based on. It is of YYYYMMDD form. The value can also be negative 1 (-1), the field
not set (for older CDFs), or zero (0) if the leap second table is not being accessed. This field is only relevant to TT2000
data in the CDF.

The arguments to CDFgetLeapSecondLastUpdated are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date that the latest leap second was added to the leap second table.

4.2.19.1. Example(s)
The following example returns the date that the last leap second was added to the leap second table from the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim lastUpdatedas integer ¢ Format.

try

status = CDFgetLeapSecondLastUpdated(id, lastUpdated)

45

c;t.ch ex as Exception
end try
4.2.20 CDFgetMajority

integer CDFgetMajority (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
majority as integer) ¢ out -- Variable majority.

3

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in
Section 2.9.

The arguments to CDFgetMajority are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority Variable majority of the CDF.

4.2.20.1. Example(s)
The following example returns the majority of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim majority as integer ¢ Majority.

try

status = CDFgetMajority (id, majority)

ca-l.t.ch ex as Exception
end try
4.2.21 CDFgetName

integer CDFgetName (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
name as string) ¢ out -- CDF name.

3

CDFgetName returns the file name of the specified CDF.
The arguments to CDFgetName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

name File name of the CDF.

46

4.2.21.1. Example(s)
The following example returns the name of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim name as string ¢ Name of the CDF.
try

status = CDFgetName (id, name)

catch ex as Exception
end try

4.2.22 CDFgetNegtoPosfp0Mode

integer CDFgetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
negtoPosfp0 as integer) ¢ out-- -0.0 to 0.0 mode.

CDFgetNegtoPosfpOMode returns the —0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 method to set
the mode. The —0.0 to 0.0 modes are described in Section 2.16.

The arguments to CDFgetNegtoPosfpOMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 —0.0 to 0.0 mode of the CDF.

4.2.22.1. Example(s)
The following example returns the —0.0 to 0.0 mode of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

try

status = CDFgetNegtoPosfp0Mode (id, negtoPosfp0)

catch ex as Exception

end try

47

4.2.23 CDFgetReadOnlyMode

integer CDFgetReadOnlyMode(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
readOnlyMode as integer) ¢ out -- CDF read-only mode.

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 2.14.

The arguments to CDFgetReadOnlyMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode Read-only mode (READONLYon or READONLY ofY).

4.2.23.1. Example(s)

The following example returns the read-only mode for the given CDF.

dim id as long ¢ CDF identifier.

Dim status as integer

dim readMode as integer ¢ CDF read-only mode.
try

status = CDFgetReadOnlyMode (id, readMode)

catch ex as Exception
end try

4.2.24 CDFgetStageCacheSize

integer CDFgetStageCacheSize(out -- Completion status code.
id as long, “ in-- CDF identifier.
numBuffers as integer) ¢ out -- The stage cache size.

3

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFgetStageCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

4.2.24.1. Example(s)

The following example returns the number of cache buffers used in a CDF.

48

dim id as long ¢ CDF identifier.
Dim status as integer
dim numBuffers as integer ¢ The number of cache buffers.

try

status = CDFgetStageCacheSize (id, numBuffers)

catch ex as Exception
end try
4.2.25 CDFgetValidate
integer CDFgetValidate() ¢ out — CDF validation mode.
CDFgetValidate returns the data validation mode. This information reflects whether when a CDF is open, its certain
data fields are subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.

The arguments to CDFgetVersion are defined as follows:

N/A

4.2.25.1. Example(s)

In the following example, it gets the data validation mode.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim validate as integer ¢ Data validation flag.
try

validate = CDFgetValidate ()

catch ex as Exception
end try

4.2.26 CDFgetVersion

integer CDFgetVersion(out -- Completion status code.
id as long, “ in-- CDF identifier.

version as integer, out -- CDF version.

release as integer, ¢ out -- CDF release.
increment as integer) out -- CDF increment.

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

49

The arguments to CDFgetVersion are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

version CDF version number.
release CDF release number.
increment CDF increment number.

4.2.26.1. Example(s)

In the following example, a CDF’s version/release is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim version as integer CDF version.

dim release as integer ¢ CDF release

dim increment as integer ¢ CDF increment.

3

try

status = CDFgetVersion (id, version, release, increment)

catch ex as Exception
end try

4.2.27 CDFgetzMode

integer CDFgetzMode(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
zMode as integer) ¢ out -- CDF zMode.

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 2.15.
The arguments to CDFgetzMode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

zMode CDF zMode.

4.2.27.1. Example(s)

In the following example, a CDF’s zMode is acquired.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.

50

dim zMode as integer

try

¢ CDF zMode.

status = CDFgetzMode (id, zMode)

catch ex as Exception

end try

4.2.28 CDFinquire

integer CDFinquire(
id as long,

numDims as integer,
dimSizes as integer(),
encoding as integer,
majority as integer,
maxRec as integer,
numVars as integer,
numAttrs as integer)

out -- Completion status code.

“ in -- CDF identifier

out -- Number of dimensions, rVariables.

out -- Dimension sizes, rVariables.

out -- Data encoding.

out -- Variable majority.

out -- CDF’s maximum record number, rVariables.
¢ out -- Number of rVariables in the CDF.

out -- Number of attributes in the CDF.

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id

numDims

dimSizes

encoding

majority

maxRec

numVars

numAttrs

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Number of dimensions for the rVariables in the CDF.

Dimension sizes of the rVariables in the CDF. dimSizes is a l-dimensional array
containing one element per dimension. FEach element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but

must be present).

Encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.7.

Majority of the variable data. The majorities are defined in Section 2.9.

Maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

Number of rVariables in the CDF.

Number of attributes in the CDF.

51

4.2.28.1. Example(s)

The following example returns the basic information about a CDF.

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables

Data encoding.

Variable majority.

Maximum record number,

dim id as long

dim status as integer

dim numDims as integer
Dim dimSizes() as integer
dim encoding as integer
dim majority as integer
dim maxRec as integer

¢ rVariables.
dim numVars as integer ¢ Number of rVariables in CDF.
dim numAttrs as integer ¢ Number of attributes in CDF.
try
status = CDFinquire (id, numDims, dimSizes, encoding, majority,
maxRec, numVars, numAttrs)
catch ex as Exception
end try
4.2.29 CDFinquireCDF
integer CDFinquireCDF(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier

out -- Number of dimensions for rVariables.

out -- Dimension sizes for rVariables.

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number among rVariables .
out -- Number of rVariables in the CDF.

out -- Maximum record number among zVariables .
¢ out -- Number of zVariables in the CDF.

out -- Number of attributes in the CDF.

numDims as integer,
dimSizes as integer(),
encoding as integer,
majority as integer,
maxrRec as integer,
numrVars as integer,
maxzRec as integer,
numzVars as integer,
numAttrs as integer)

CDFinquireCDF returns the basic characteristics of a CDF. This method expands the method CDFinquire by acquiring
extra information regarding the zVariables. Knowing the variable majority can be used to optimize performance and is
necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numDims Number of dimensions for the rVariables in the CDF. Note that all the rVariables’
dimensionality in the same CDF file must be the same.

dimSizes Dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension

sizes in the same CDF file must be the same). dimSizes is a 1-dimensional array
containing one element per dimension. FEach element of dimSizes receives the

52

encoding

majority

maxrRec

numrVars

maxzRec

numzVars

numAttrs

4.2.29.1. Example(s)

corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

Encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.7.

Majority of the variable data. The majorities are defined in Section 2.9.

Maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

Number of rVariables in the CDF.

Maximum record number written to a zVariable in the CDF. Note that the maximum
record number written is also kept separately for each zVariable in the CDF. The value of
maxRec is the largest of these. Some zVariables may have fewer records than actually
written. Use CDFgetzVarMaxWrittenRecNum to inquire the actual number of records
written for an individual zVariable.

Number of zVariables in the CDF.

Number of attributes in the CDF.

The following example returns the basic information about a CDF.

dim id as long
dim status as integer
dim numDims as integer

Dim dimSizes() as integer

dim encoding as integer
dim majority as integer
dim maxRec as integer
dim numrVars as integer
dim maxzRec as integer
dim numzVars as integer
dim numAttrs as integer

try

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables .

Data encoding.

Variable majority.

Maximum record number, rVariables.
¢ Number of rVariables in CDF.
Maximum record number, zVariables.
¢ Number of zVariables in CDF.
Number of attributes in CDF.

status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority,

catch ex as Exception
end try

4.2.30 CDFopen

integer CDFopen(
CDFname as string,
id as long)

maxrRec, numrVars, maxzRec, numzVars, numAttrs)

3

out -- Completion status code.
¢ in -- CDF file name.
* out-- CDF identifier.

53

CDFopen, a legacy CDF function, opens an existing CDF. The CDF is initially opened with only read access. This
allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is
automatically closed and reopened with read/write access. (The method will fail if the application does not have or
cannot get write access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname File name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

4.2.30.1. Example(s)
The following example will open a CDF named “NOAA1.cdf”.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFname as string = "NOAA1" ¢ file name of CDF.

try

status = CDFopen (CDFname, id)
catch ex as Exception
end try

4.2.31 CDFopenCDF

Integer CDFopenCDF(¢ out -- Completion status code.
CDFname as string, ¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFopenCDF opens an existing CDF. This method is identical to CDFopen, and the use of this method is strongly
encouraged over CDFopen as it might not be supported in the future. The CDF is initially opened with only read
access. This allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF
is made, it is automatically closed and reopened with read/write access. The method will fail if the application does not
have or cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:
CDFname File name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory

specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

54

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.31.1. Example(s)
The following example will open a CDF named “NOAA1.cdf”.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFname as string = "NOAAT1" ¢ file name of CDF.

try

status = CDFopenCDF (CDFname, id)

catch ex as Exception
end try

4.2.32 CDFselect

integer CDFselect(¢ out -- Completion status code.
id as long) ¢ in -- CDF identifier.

CDFselect selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from a
CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied.

The arguments to CDFselect are defined as follows:

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.32.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim idl as long, id2 as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.

55

Dim CDFname?2 as string = "NOAA2" ¢ file name of CDF.
try
status = CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselect(id1)
-s.t.étus = CDFclose(id1)
status = CDFclose(id2)
catch ex as Exception
end try
4.2.33 CDFselectCDF

integer CDFselectCDF(¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFselectCDF selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from
a CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied. This method is identical to CDFselect.

The arguments to CDFselectCDF are defined as follows:

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.33.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim idl as long, i2 as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.
Dim CDFname? as string = "NOAA2" ¢ file name of CDF.

try

.sltéllms: CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselectCDF(id1)

status = CDFelose(id1)

status = CDFclose(id2)
catch ex as Exception

56

end try

4.2.34 CDFsetCacheSize

integer CDFsetCacheSize (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffer as integer) in -- CDF’s cache buffers.

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

4.2.34.1. Example(s)

The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300
for a single-file format CDF on Unix systems.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim cacheBuffers as integer ¢ CDF’s cache buffers.

cacheBuffers = 500
try

status = CDFsetCacheSize (id, cacheBuffers)

;:.éltch ex as Exception
end try
4.2.35 CDFsetChecksum

integer CDFsetChecksum (¢ out -- Completion status code.

id as long, * in-- CDF identifier.

checksum as integer) ¢ in -- CDF’s checksum mode.
CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFsetChecksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

checksum Checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

57

4.2.35.1. Example(s)
The following example turns off the checksum flag for the open CDF file..

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim checksum as integer ¢ CDF’s checksum.

checksum= NO CHECKSUM
try

status = CDFsetChecksum (id, checksum)

catch ex as Exception
end try
4.2.36 CDFsetCompression

integer CDFsetCompression (out -- Completion status code.

id as long, ¢ in-- CDF identifier.
compressionType as integer, in -- CDF’s compression type.
CompressionParms as integer()) in -- CDF’s compression parameters.

CDFsetCompression specifies the compression type and parameters for a CDF. This compression refers to the CDF,
not of any variables. The compressions are described in Section 2.11.

The arguments to CDFsetCompression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionType Compression type .

compressionParms Compression parameters.

4.2.36.1. Example(s)
The following example uses GZIP.6 to compress the CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim compressionType as integer CDEF’s compression type.

Dim compressionParms(1) as integer CDF’s compression parameters.

13

13

compressionType = GZIP_ COMPRESSION
compressionParms(0) = 6

try

status = CDFsetCompression (id, compressionType, compressionParms) ...

58

catch ex as Exception
end try
4.2.37 CDFsetCompressionCacheSize

integer CDFsetCompressionCacheSize (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ in -- CDF’s compressed cache buffers.

13

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers Number of cache buffers.

4.2.37.1. Example(s)

The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim numBuffers as integer = 100 ¢ CDF’s compression cache buffers.
try

status = CDFsetCompressionCacheSize (id, numBuffers)

ca-l.t.ch ex as Exception
end try
4.2.38 CDFsetDecoding

integer CDFsetDecoding (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
decoding as integer) ¢ in -- CDF decoding.

3

CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 2.8.
The arguments to CDFsetDecoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

decoding Decoding of a CDF.

59

4.2.38.1. Example(s)
The following example sets NETWORK DECODING to be the decoding scheme in the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim decoding as integer ¢ Decoding.

decoding = NETWORK DECODING
try

status = CDFsetDecoding (id, decoding)

ca'l.t.ch ex as Exception
end try
4.2.39 CDFsetEncoding

integer CDFsetEncoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
encoding as integer) ¢ in -- CDF encoding.

3

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 2.7.

The arguments to CDFsetEncoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

encoding Encoding of the CDF.

4.2.39.1. Example(s)
The following example sets the encoding to HOST ENCODING for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim encoding as integer ¢ Encoding.

encoding = HOST ENCODING

try
status = CDFsetEncoding(id, encoding)

catch ex as Exception

end try

60

4.2.40 CDFsetFileBackward

void CDFsetFileBackward(
mode as integer) ‘ in -- File backward Mode.

CDFsetFileBackward sets the backward mode. When the mode is set as FILEBACKWARDon, any new CDF files
created are of version 2.7, instead of the underlining library version. If mode FILEBACKWARDoff is used, the default
for creating new CDF files, the library version is the version of the file.

The arguments to CDFsetFileBackward are defined as follows:

mode Backward mode.

4.2.40.1. Example(s)

In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be
created will be of version V3.*, the same as the library version.

try

CDFsetFileBackward (FILEBACKWARDoff)

catch ex as Exception

end try

4.2.41 CDFsetFormat

integer CDFsetFormat (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

format as integer) ¢ in -- CDF format.

CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 2.5.

3

The arguments to CDFsetFormat are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format File format of the CDF.

4.2.41.1. Example(s)
The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE FILE format.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim format as integer ¢ Format.

format = MULTI FILE
try

61

status = CDFsetFormat(id, format)

C;t;th ex as Exception
end try
4.2.42 CDFsetLeapSecondLastUpdated

integer CDFsetLeapSecondLastUpdated (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
lastUpdated as integer) ¢ in -- Leap second last updated date

CDFsetLeapSecondLastUpdated respecifies the leap second last updated date in the CDF. The value, in YYYYMMDD
form, indicates what/if the leap second table this CDF is based upon. The value is either a valid entry in the currently
used leap second table, or zero (0). Value zero means the CDF is not using any leap second table. This field is only
relevant to TT2000 data. Normally, this function is used for older CDFs that have not had the field set.

The arguments to CDFsetLeapSecondLastUpdated are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

lastUpdated Date the latest leap second was added to the leap second table.

4.2.42.1. Example(s)

The following example resets the leap second last updated date in the CDF. Likely, the file’s field was not set originally
(an older CDF).

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim lastUpdated as integer ¢ Leap second last updated.

lastUpdated = 20150701
try

status = CDFsetLeapSecondLastUpdated (id, lastUpdated)

catch ex as Exception
end try

4.2.43 CDFsetMajority

integer CDFsetMajority (out -- Completion status code.
id as long, “ in-- CDF identifier.
majority as integer) ¢ in -- CDF variable majority.

13

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 2.9.

62

The arguments to CDFsetMajority are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority Variable majority of the CDF.

4.2.43.1. Example(s)
The following example sets the majority to COLUMN_MAJOR for the CDF. The default is ROW_MAJOR.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim majority as integer ¢ Majority.

majority = COLUMN_ MAJOR
try

status = CDFsetMajority (id, majority)

catch ex as Exception
end try

4.2.44 CDFsetNegtoPosfp0Mode

integer CDFsetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
negtoPosfp0 as integer) ¢ in -- -0.0 to 0.0 mode.

CDFsetNegtoPosfpOMode specifies the —0.0 to 0.0 mode of the CDF. The —0.0 to 0.0 modes are described in Section
2.16.

The arguments to CDFsetNegtoPosfpOMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 —0.0 to 0.0 mode of the CDF.

4.2.44.1. Example(s)
The following example sets the —0.0 to 0.0 mode to ON for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

negtoPosfp0 = NEGtoPOSfpOon
try

63

St'ét;:ls = CDFsetNegtoPosfpOMode (id, negtoPosfp0)
C;t.Ch ex as Exception
end try
4.2.45 CDFsetReadOnlyMode

integer CDFsetReadOnlyMode(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
readOnlyMode as integer) ¢ in -- CDF read-only mode.
CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 2.14.
The arguments to CDFsetReadOnlyMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode Read-only mode.

4.2.45.1. Example(s)
The following example sets the read-only mode to OFF for the CDF.

dim id as long ¢ CDF identifier.
Dim readMode as integer ¢ CDF read-only mode.
Dim status as integer

readMode = READONLY off
try

status = CDFsetReadOnlyMode (id, readMode)

C;t.Ch ex as Exception
end try
4.2.46 CDFsetStageCacheSize

integer CDFsetStageCacheSize(‘ out -- Completion status code.
id as long, * in-- CDF identifier.
numBuffers as integer) ¢ in -- The stage cache size.

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scratch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

64

numBuffers Number of cache buffers.

4.2.46.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

dim id as long ¢ CDF identifier.
Dim numBufffers as integer ¢ The number of cache buffers.
Dim status as integer

numBufffers = 10
try

status = CDFsetStageCacheSize (id, numBuffers)

ca'l.t.ch ex as Exception
end try
4.2.47 CDFsetValidate

void CDFsetValidate(
mode as integer) ¢ in -- File Validation Mode.

CDFsetValidate sets the data validation mode. The validation mode dedicates whether certain data in an open CDF file
will be validated. This mode should be set before the any files are opened. Refer to Data Validation Section 2.21.

The arguments to CDFgetVersion are defined as follows:

mode Validation mode.

4.2.47.1. Example(s)

In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data
validation process when they are open.

try

C.].)'l'ssetValidate (VALIDATEFILEon)
cz&(‘:h ex as Exception
en'c.l.try

4.2.48 CDFsetzMode

integer CDFsetzMode(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
zMode as integer) ¢ in -- CDF zMode.

65

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 2.15 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVariables, or 2) rVariables and zVariables. If you want to treat rVariables as zVariables, it’s
highly recommended to set the value of zMode to ZMODEon2.

The arguments to CDFsetzMode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

zMode CDF zMode.

4.2.48.1. Example(s)

In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

Dim zMode as integer ¢ CDF zMode.

zMode = zMODEon2
try

status = CDFsetzMode (id, zMode)

catch ex as Exception
end try

4.3 Variables

The methods in this section are all CDF variable-specific. A variable, either a rVariable or zVariable, is identified by
its unique name in a CDF or a variable number. Before you can perform any operation on a variable, the CDF in which
it resides in must be opened.

4.3.1 CDFcloserVar

integer CDFcloserVar(out -- Completion status code.
id as long, “ in-- CDF identifier.
varNum as integer) ‘¢ in -- rVariable number.

3

CDFcloserVar closes the specified rVariable file from a multi-file format CDF. Note that rVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFcloserVar are defined as follows:

66

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Variable number for the open rVariable’s file. This identifier must have been initialized by a call to
CDFcreaterVar or CDFgetVarNum.

4.3.1.1. Example(s)

The following example will close an open rVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

try
V;r'l'\lum = CDFgetVarNum (id, “VAR_NAME1"”)
'status = CDFcloserVar (id, varNum)
;:.éltch ex as Exception
en'c.l.try

4.3.2 CDFclosezVar

integer CDFclosezVar(out -- Completion status code.
id as long, “ in-- CDF identifier.
varNum as integer) ¢ in -- zVariable number.

3

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Variable number for the open zVariable’s file. This identifier must have been initialized by a call to
CDFcreatezVar or CDFgetVarNum.

4.3.2.1. Example(s)

The following example will close an open zVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

67

3

Dim varNum as integer zVariable number.

try
V;r'l'\lum = CDFgetVarNum (id, “VAR_NAME1"”)
'status = CDFclosezVar (id, varNum)
;:.éltch ex as Exception
en'c.l.try

4.3.3 CDFconfirmrVarExistence

integer CDFconfirmrVarExistence(out -- Completion status code.
id as long, “ in-- CDF identifier.
varName as string) ‘¢ in -- rVariable name.

3

CDFconfirmrVarExistence confirms the existence of a rVariable with a given name in a CDF. If the rVariable does not
exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName rVariable name to check.

4.3.3.1. Example(s)
The following example checks the existence of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmrVarExistence (id, “MY_VAR?”)
if status <> CDF_OK then UserStatusHandler (status)

catch ex as Exception
end try

4.3.4 CDFconfirmrVarPadValueExistence

integer CDFconfirmrVarPadValueExistence(out -- Completion status code.
id as long, “ in-- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

13

68

CDFconfirmrVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
rVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO_PADVALUE_SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmrVarPadValueExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

4.3.4.1. Example(s)
The following example checks the existence of the pad value of rVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

try
varNum = CDFgetVarNum(id, “MY_VAR”)
status = CDFconfirmrVarPadValueExistence (id, varNum)
if status <> NO PADVALUE SPECIFIED then

end if

catch ex as Exception
end try
4.3.5 CDFconfirmzVarExistence

integer CDFconfirmzVarExistence(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
varName as string) ‘¢ in -- zVariable name.

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does
not exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName zVariable name to check.

4.3.5.1. Example(s)
The following example checks the existence of zVariable “MY_VAR” in a CDF.

69

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.

try
status = CDFconfirmzVarExistence (id, “MY_VAR”)
if status <> CDF_OK then UserStatusHandler (status)

catch ex as Exception
end try

4.3.6 CDFconfirmzVarPadValueExistence

integer CDFconfirmzVarPadValueExistence(out -- Completion status code.
id as long, “ in-- CDF identifier.
varNum as integer) ‘ in -- zVariable number.

13

CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

4.3.6.1. Example(s)
The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

dim id as longid ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim varNum as integer ¢ zVariable number.
try

varNum = CDFgetVarNum(id, “MY_VAR”)
status = CDFconfirmzVarPadValueExistence (id, varNum)
if status <> NO PADVALUE SPECIFIED then

end if

catch ex as Exception

end try

70

4.3.7 CDFcreaterVar

integer CDFcreaterVar(
id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,

dimVariances as integer(),

varNum as integer)

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFcreaterVar is used to create a new rVariable in a CDF. A variable (rVariable or rVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreaterVar are defined as follows:

id

varName

dataType

numElements

recVariance

dimVariances

varNum

4.3.7.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

Name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

Data type of the new rVariable. Specify one of the data types defined in Section 2.6.

Number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

rVariable's record variance. Specify one of the variances defined in Section 2.10.

rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

Number assigned to the new rVariable. This number must be used in subsequent CDF
function calls when referring to this rVariable. An existing rVariable's number may be
determined with the CDFgetVarNum function.

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long
Dim status as integer

¢ CDF identifier.
Returned status code.

Dim EPOCHrecVary as integer = VARY ¢ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ¢ LAT record variance.

Dim LONrecVary as integer = NOVARY ¢ LON record variance.

Dim TMPrecVary as integer = VARY ¢ TMP record variance.

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY} ¢ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ¢ LAT dimension variances.
Dim LONdimVarys() as integer = { VARY,VARY} ¢ LON dimension variances.
Dim TMPdimVarys() as integer = { VARY,VARY} ¢ TMP dimension variances.

Dim EPOCHvarNum as integer

¢ EPOCH rVariable number.

71

Dim LATvarNum as integer ¢ LAT rVariable number.

Dim LONvarNum as integer ¢ LON rVariable number.
Dim TMPvarNum as integer ¢ TMP rVariable number.
try

status = CDFcreaterVar (id, "EPOCH", CDF_EPOCH, 1, EPOCHrecVary, _

EPOCHdimVarys, EPOCH varNum)

status = CDFcreaterVar (id, "LATITUDE", CDF_INT2, 1, LATrecVary, LATdimVarys, LATvarNum)
status = CDFcreaterVar (id, "INTITUDE", CDF_INT2, 1, LONrecVary, LONdimVarys, LONvarNum)
status = CDFcreaterVar (id, "TEMPERATURE", CDF_REALA4, 1, TMPrecVary, _

catch ex as Exception

end try

TMPdimVarys, TMPvarNum)

4.3.8 CDFcreatezVar

integer CDFcreatezVar(
id as long,

varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer(),
varNum as integer)

CDFcreatezVar is used to

out -- Completion status code.

¢ in -- CDF identifier.

in -- zVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Number of dimensions.

¢ in -- Dimension sizes

in -- Record variance.

in -- Dimension variances.
out -- zVariable number.

create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name

must not already exist in the CDF.

The arguments to CDFcreatezVar are defined as follows:

id

varName

dataType

numElements

numDims

dimSizes

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

Name of the zVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

Data type of the new zVariable. Specify one of the data types defined in Section 2.6.

Number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions the zVariable. This may be as few as zero (0) and at most
CDF_MAX DIMS.

Size of each dimension. Each element of dimSizes specifies the corresponding dimension

size. Each size must be greater then zero (0). For 0-dimensional zVariables this argument is
ignored (but must be present).

72

recVariance zVariable's record variance. Specify one of the variances defined in Section 2.10.

dimVariances zVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional zVariables this argument is ignored (but
must be present).

varNum Number assigned to the new zVariable. This number must be used in subsequent CDF
function calls when referring to this zVariable. An existing zVariable's number may be
determined with the CDFgetVarNum function.

4.3.8.1. Example(s)

The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and
LON are 2-diemnational, and TMP is a 1-dimensional.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim EPOCHrecVary as integer = VARY ¢ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ¢ LAT record variance.

Dim LONrecVary as integer = NOVARY ¢ LON record variance.

Dim TMPrecVary as integer = VARY ¢ TMP record variance.

Dim EPOCHdimVarys() as integer = (NOVARY } ¢ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ¢ LAT dimension variances.
Dim LONdimVarys() as integer = { VARY,VARY} ¢ LON dimension variances.
Dim TMPdimVarys() as integer = { VARY,VARY} ¢ TMP dimension variances.
Dim EPOCHvarNum as integer ¢ EPOCH zVariable number.
Dim LATvarNum as integer ¢ LAT zVariable number.
Dim LONvarNum as integer ¢ LON zVariable number.
Dim TMPvarNum as integer ¢ TMP zVariable number.
Dim EPOCHdimSizes() as integer = {3} ¢ EPOCH dimension sizes.
Dim LATLONdimSizes() as integer = {2,3} ¢ LAT/LON dimension sizes.
Dim TMPdimSizes() as integer = {3} ¢ TMP dimension sizes.

try

status = CDFcreatezVar (id, "EPOCH", CDF_EPOCH, 1, 0, EPOCHdimSizes, EPOCHrecVary, _
EPOCHdimVarys, EPOCHvarNum)

status = CDFcreatezVar (id, "LATITUDE", CDF INT2, 1,2, LATLONdimSizes,LATrecVary, _
LATdimVarys, LATvarNum)

status = CDFcreatezVar (id, "INTITUDE", CDF INT2, 1,2, LATLONdimSizes, LONrecVary,
LONdimVarys, LONvarNum)

status = CDFcreatezVar (id, "TEMPERATURE", CDF_REALA4, 1, 1, TMPdimSizes, TMPrecVary, _
TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

4.3.9 CDFdeleterVar

integer CDFdeleterVar(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

73

3

varNum as integer) in -- rVariable identifier.
CDFdeleterVar deletes the specified rVariable from a CDF.

The arguments to CDFdeleterVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number to be deleted.

4.3.9.1. Example(s)
The following example deletes the rVariable named MY VAR in a CDF.

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

'.cry
V;r'l'\lum = CDFgetVarNum (id, “MY_VAR”)
status = CDFdeleterVar (id, varNum)
ca-l.t.ch ex as Exception
end try
4.3.10 CDFdeleterVarRecords

integer CDFdeleterVarRecords(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeleterVarRecords deletes a range of data records from the specified rVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.”

The arguments to CDFdeleterVarRecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the rVariable.
startRec Starting record number to delete.

endRec Ending record number to delete.

7 Normal variables without sparse records have contiguous physical records. Once a section of the records get deleted,
the remaining ones automatically fill the gap.

74

4.3.10.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer rVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3

13

try

varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec =20

status = CDFdeleterVarRecords (id, varNum, startRec, endRec)

catch ex as Exception
end try

4.3.11 CDFdeleterVarRecordsRenumber

integer CDFdeleterVarRecordsRenumber(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- rVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeleterVarRecordsRenumber deletes a range of data records from the specified rVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.

The arguments to CDFdeleterVarRecordsRenumber are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the rVariable.
startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.11.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

75

3

Dim varNum as integer rVariable number.
Dim startRec as integer ¢ Starting record number.
Dim endRec as integer ¢ Ending record number.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10

endRec = 20
status = CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception
end try

4.3.12 CDFdeletezVar

integer CDFdeletezVar(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer) ¢ in -- zVariable identifier.
CDFdeletezVar deletes the specified zVariable from a CDF.

The arguments to CDFdeletezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number to be deleted.

4.3.12.1. Example(s)
The following example deletes the zVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ zVariable number.

try
V;r'l'\lum = CDFgetVarNum (id, “MY_VAR”)
status = CDFdeletezVar (id, varNum)
ca-l.t.ch ex as Exception
end try
4.3.13 CDFdeletezVarRecords

integer CDFdeletezVarRecords(out -- Completion status code.
id as long, * in-- CDF identifier.

76

3

in -- zVariable identifier.
in -- Starting record number.
in -- Ending record number.

varNum as integer,
startRec as integer,
endRec as integer)

3

3

CDFdeletezVarRecords deletes a range of data records from the specified zVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.

The arguments to CDFdeletezVarRecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the zVariable.
startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.13.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
Dim varNum as integer ¢ zVariable number.
Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

13

3

try

varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec =20

status = CDFdeletezVarRecords (id, varNum, startRec, endRec)

ca-l.t.ch ex as Exception
end try
4.3.14 CDFdeletezVarRecordsRenumber

integer CDFdeletezVarRecordsRenumber(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- zVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeletezVarRecordsRenumber deletes a range of data records from the specified zVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s

records.

The arguments to CDFdeletezVarRecordsRenumber are defined as follows:

71

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the zVariable.
startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.14.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ zVariable number.
Dim startRec as integer ¢ Starting record number.
Dim endRec as integer ¢ Ending record number.
try

varNum = CDFgetVarNum (id, “MY_VAR”)

startRec = 10

endRec =20

status = CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception
end try

4.3.15 CDFgetMaxWrittenRecNums

integer CDFgetMaxWrittenRecNums (¢ out -- Completion status code.

id as long, “ in-- CDF identifier.

rVarsMaxNum as integer, out -- Maximum record number among all rVariables.
zVarsMaxNum as integer) out -- Maximum record number among all zVariables.
CDFgetMaxWrittenRecNums returns the maximum written record number for the rVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all
respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

rVarsMaxNum Maximum record number among all rVariables.

zVarsMaxNum Maximum record number among all zVariables.

78

4.3.15.1. Example(s)

The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim rVarsMaxNum as integer ¢ Maximum record number among all rVariables.
Dim zVarsMaxNum as integer ¢ Maximum record number among all zVariables.
try

status = CDFgetMaxWrittenRecNums (id, rVarsMaxNum, zVarsMaxNum)

ca'l.t.ch ex as Exception
end try
4.3.16 CDFgetNumrVars

integer CDFgetNumrVars (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numVars as integer) ¢ out -- Total number of rVariables.

13

CDFgetNumrVars returns the total number of rVariables in a CDF.
The arguments to CDFgetNumrVars are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars Number of rVariables.

4.3.16.1. Example(s)

The following example returns the total number of rVariables in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.
try

status = CDFgetNumrVars (id, numVars)

catch ex as Exception

end try

79

4.3.17 CDFgetNumzVars

integer CDFgetNumzVars (out -- Completion status code.
id as long, “ in-- CDF identifier.
numVars as integer) ¢ out -- Total number of zVariables.

3

CDFgetNumzVars returns the total number of zVariables in a CDF.
The arguments to CDFgetNumzVars are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars Number of zVariables.

4.3.17.1. Example(s)

The following example returns the total number of zVariables in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.
try

status = CDFgetNumzVars (id, numVars)

catch ex as Exception
end try

4.3.18 CDFgetrVarAllocRecords

integer CDFgetrVarAllocRecords(¢ out -- Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer, ‘¢ in -- Variable number.

numRecs as integer) out -- Allocated number of records.
CDFgetrVarAllocRecords returns the number of records allocated for the specified rVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

3

The arguments to CDFgetrVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of allocated records.

80

4.3.18.1. Example(s)
The following example returns the number of allocated records for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim numRecs as integer ¢ The allocated records.
Dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarAllocRecords (id, varNum, numRecs)

ca'l.t.ch ex as Exception
end try
4.3.19 CDFgetrVarBlockingFactor

integer CDFgetrVarBlockingFactor(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) out -- Blocking factor.

CDFgetrVarBlockingFactor returns the blocking factor for the specified rVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetrVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

bf Blocking factor. A value of zero (o) indicates that the default blocking factor will be used.

4.3.19.1. Example(s)
The following example returns the blocking factor for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarBlockingFactor (id, varNum, bf) .

81

catch ex as Exception
end try
4.3.20 CDFgetrVarCacheSize

integer CDFgetrVarCacheSize(‘ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) out -- Number of cache buffers.

CDFgetrVarCacheSize returns the number of cache buffers being for the specified rVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetrVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numBuffers Number of cache buffers.

4.3.20.1. Example(s)
The following example returns the number of cache buffers for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer
try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarCacheSize (id, varNum, numBuffers)

catch ex as Exception
end try

4.3.21 CDFgetrVarCompression

integer CDFgetrVarCompression(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetrVarCompression returns the compression type/parameters and compression percentage of the specified
rVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The

82

compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetrVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

compType Compression type.

cParms Compression parameters.

cPct Percentage of the uncompressed size of rVariable’s data values needed to store the

compressed values.

4.3.21.1. Example(s)

The following example returns the compression information for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim compType as integer ¢ The compression type.

Dim cParms(1) as integer ¢ The compression parameters.
Dim cPct as integer ¢ The compression percentage.
try

varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetrVarCompression (id, varNum, compType, cParms, cPct)

catch ex as Exception
end try

4.3.22 CDFgetrVarData

integer CDFgetrVarData(¢ out -- Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

recNum as integer, in -- Record number.

indices as integer(), in -- Dimension indices.

value as TYPE) ‘¢ out -- Data value.

TYPE -- VB value/string type or object.
CDFgetrVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFgetrVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

83

varNum rVariable number.

recNum Record number.
indices Dimension indices within the record.
value Data value.

4.3.22.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR?”,
a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim recNum as integer ¢ The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

13

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = (0
indices(0) =0
indices(1) =0
status = CDFgetrVarData (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
object value2o
status = CDFgetrVarData (id, varNum, recNum, indices, value20)
value2 = value2o

catch ex as Exception
end try

4.3.23 CDFgetrVarDataType

integer CDFgetrVarDataType(out -- Completion status code.
id as long, “in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) out -- Data type.

CDFgetrVarDataType returns the data type of the specified rVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.

The arguments to CDFgetrVarDataType are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

84

dataType Data type.

4.3.23.1. Example(s)
The following example returns the data type of rVariable “MY_VAR” ina CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim dataType as integer ¢ The data type.
dim status as integer

:cry
“\'/'arNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetrVarDataType (id, varNum, dataType)
ca'l.t.ch ex as Exception
end try
4.3.24 CDFgetrVarDimVariances

integer CDFgetrVarDimVariances(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) out -- Dimension variances.

CDFgetrVarDimVariances returns the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetrVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dimVarys Dimension variances.

4.3.24.1. Example(s)

The following example returns the dimension variances of the 2-dimensional rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dimVarys(2) as integer ¢ The dimension variances.
try

status = CDFgetrVarDimVariances (id, CDFgetVarNum (id, “MY_VAR?”), dimVarys)

85

c;t.ch ex as Exception
end try
4.3.25 CDFgetrVarlnfo

integer CDFgetrVarlnfo(
id as long,

varNum as integer,
dataType as integer,
numElems as integer,
numDims as integer,
dimSizes as integer())

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Data type.

out -- Number of elements.
out -- Number of dimensions.
out -- Dimension sizes.

CDFgetrVarlnfo returns the basic information about the specified rVariable in a CDF.

The arguments to CDFgetrVarInfo are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum rVariable number.

dataType Data type of the variable.

numElems Number of elements for the data type of the variable.
numDims Number of dimensions.

dimSizes Dimension sizes.

4.3.25.1. Example(s)

The following example returns the basic information of rVariable “MY_VAR” in a CDF.

dim id as long

Dim dataType as integer
Dim numElems as integer
Dim numDims as integer
Dim dimSizes() as integer
dim status as integer

try

3

3

3

CDF identifier.

The data type.

The number of elements.
The number of dimensions.
The dimension sizes.

status = CDFgetrVarInfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems, _

numDims, dimVarys)

catch ex as Exception

end try

86

4.3.26 CDFgetrVarMaxAllocRecNum

integer CDFgetrVarMaxAllocRecNum(¢ out -- Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum allocated record #.
CDFgetrVarMaxAllocRecNum returns the number of records allocated for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxAllocRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

maxRec Number of records allocated.

4.3.26.1. Example(s)

The following example returns the maximum allocated record number for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try

status = CDFgetrVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
catch ex as Exception
end try

4.3.27 CDFgetrVarMaxWrittenRecNum

integer CDFgetrVarMaxWrittenRecNum (¢ out -- Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetrVarMax WrittenRecNum returns the maximum record number written for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

maxRec Maximum written record number.

87

4.3.27.1. Example(s)

The following example returns the maximum record number written for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try
status = CDFgetrVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
catch ex as Exception
end try
4.3.28 CDFgetrVarName

integer CDFgetrVarName(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
varName as string) out -- Variable name.
CDFgetrVarName returns the name of the specified rVariable, by its number, in a CDF.

The arguments to CDFgetrVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

varName Name of the variable.

4.3.28.1. Example(s)

The following example returns the name of the rVariable whose variable number is 1.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim varName as string ¢ The name of the variable.
Dim status as integer.

varNum = 1
try

status = CDFgetrVarName (id, varNum, varName)
catch ex as Exception

end try

88

4.3.29 CDFgetrVarNumElements

integer CDFgetrVarNumElements(out -- Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

numElems as integer) out -- Number of elements.
CDFgetrVarNumElements returns the number of elements for each data value of the specified rVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetrVarNumElements are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numElems Number of elements.

4.3.29.1. Example(s)
The following example returns the number of elements for the data type from rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numElems as integer ¢ The number of elements.
Dim status as integer.

try

“s't'atus = CDFgetrVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) ...
c;t.ch ex as Exception
en'c.l.try

4.3.30 CDFgetrVarNumRecsWritten

integer CDFgetrVarNumRecs Written(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Number of written records.

CDFgetrVarNumRecsWritten returns the number of records written for the specified rVariable in a CDF. This number
may not correspond to the maximum record written if the rVariable has sparse records.

The arguments to CDFgetrVarNumRecsWritten are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of written records.

89

4.3.30.1. Example(s)

The following example returns the number of written records from rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try

status = CDFgetrVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

c;t.ch ex as Exception
end try
4.3.31 CDFgetrVarPadValue

integer CDFgetrVarPadValue(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ out -- Pad value.

* TYPE -- VB value/string type or object.
CDFgetrVarPadValue returns the pad value of the specified rVariable in a CDF. If a pad value has not been explicitly
specified for the rVariable through CDFsetrVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is thrown
while trying to get its value if its value is not set. It’s recommended to check the returned status after the method is
called.

The arguments to CDFgetrVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value Pad value.

4.3.31.1. Example(s)
The following example returns the pad value from rVariable “MY_VAR?”, a CDF_INT4 type variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

try
object padValueo
status = CDFgetrVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), padValueo)

if status <> NO_PADVALUE_SPECIFIED then
padValue = Ctype(padValueo, integer)

90

end if

;:'a'ltch ex as Exception
end try
4.3.32 CDFgetrVarRecordData

integer CDFgetrVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
buffer as TYPE) ¢ out -- Record data.
¢ TYPE -- VB value/string type (likely
an array) or object.

CDFgetrVarRecordData returns an entire record at a given record number for the specified rVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetrVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
recNum Record number.
buffer The buffer holding the entire record data.

4.3.32.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from rVariable “MY_VAR”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.

Dim varNum ¢ rVariable number.

Dim bufferl(,) as integer The data holding buffer — pre-allocation.
Dim buffer2(,) as integer ¢ The data holding buffer — API allocation.
Dim status as integer.

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetrVarRecordData (id, varNum, 2, bufferl)
dim buffer2o as object

status = CDFgetrVarRecordData (id, varNum, 5, buffer20)
buffer2 = buffer2o

catch ex as Exception

end try

91

4.3.33 CDFgetrVarRecVariance

integer CDFgetrVarRecVariance(
id as long,

varNum as integer,

recVary as integer)

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Record variance.

CDFgetrVarRecVariance returns the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFgetrVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recVary Record variance.

4.3.33.1. Example(s)
The following example returns the record variance for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim recVary as integer ¢ The record variance.
.Dim status as integer

try

.s.t.e.ltus = CDFgetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary) ...
c;t.ch ex as Exception
en'c.l.try

4.3.34 CDFgetrVarReservePercent

integer CDFgetrVarReservePercent(out -- Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

percent as integer) out -- Reserve percentage.
CDFgetrVarReservePercent returns the compression reserve percentage being used for the specified rVariable in a
CDF. This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetrVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

percent Reserve percentage.

92

4.3.34.1. Example(s)

The following example returns the compression reserve percentage from the compressed rVariable “MY_VAR” in a
CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The compression reserve percentage.
dim status as integer

try
status = CDFgetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)
catch ex as Exception
end try
4.3.35 CDFgetrVarsDimSizes

integer CDFgetrVarsDimSizes(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
dimSizes as integer()) ¢ out -- Dimension sizes.

3

CDFgetrVarsDimSizes returns the size of each dimension for the rVariables in a CDF. (all rVariables have the same
dimensional sizes.) For 0-dimensional rVariables, this operation is not applicable.

The arguments to CDFgetrVarsDimSizes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

dimSizes Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.35.1. Example(s)

The following example returns the dimension sizes for rVariables in a CDF.

dim id as long ¢ CDF identifier.
dim dimSizes() as integer ¢ Dimensional sizes.
Dim status as integer

Ary

status = CDFgetrVarsDimSizes (id, dimSizes)

c;t.ch ex as Exception
end try
4.3.36 CDFgetrVarSeqData

integer CDFgetrVarSeqData(¢ out -- Completion status code.

93

id as long, ¢ in-- CDF identifier.
varNum as integer, ‘¢ in -- Variable number.
value as TYPE) ¢ out -- Data value.
* TYPE -- VB value/string type or object.

CDFgetrVarSeqData reads one value from the specified rVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the rVariable. Use CDFsetrVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetrVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum rVariable number from which to read data.

value The buffer to store the value.

4.3.36.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
rVariable whose data type is CDF_INT4) in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number from which to read data
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.

Dim recNum as integer The record number.

Dim status as integer.

13

3

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFgetrVarSeqData (id, varNum, valuel)

object value2o

status = CDFgetrVarSeqData (id, varNum, value20)
value2 = value2o

catch ex as Exception
end try

4.3.37 CDFgetrVarSeqPos

integer CDFgetrVarSeqPos(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, out -- Record number.

indices as integer()) out -- Indices in a record.

94

CDFgetrVarSeqPos returns the current sequential value (position) for sequential access for the specified rVariable in a
CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFsetrVarSeqPos
method to set the current sequential value.

The arguments to CDFgetrVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
recNum rVariable record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index.

For 0-dimensional rVariable, this argument is ignored, but must be presented.

4.3.37.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional rVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The record number.
Dim indices() as integer ¢ The indices.

dim status as integer
try
“s.t.atus = CDFgetrVarSeqPos (id, CDFgetVarNum (id, “MY_VAR?”), recNum, indices)
;:'a'ltch ex as Exception
en'c.l.try

4.3.38 CDFgetrVarsMaxWrittenRecNum

integer CDFgetrVarsMax WrittenRecNum(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
recNum as integer) ¢ out -- Maximum record number.

CDFgetrVarsMaxWrittenRecNum returns the maximum record number among all of the rVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that rVariables contain no records. The maximum record
number for an individual rVariable may be acquired using the CDFgetrVarMaxWrittenRecNum method call.

Suppose there are three rVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetrVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetrVarsMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum Maximum written record number.

95

4.3.38.1. Example(s)

The following example returns the maximum record number for all of the rVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The maximum record number.
Dim status as integer.

try
status = CDFgetrVarsMaxWrittenRecNum (id, recNum)
catch ex as Exception
end try
4.3.39 CDFgetrVarsNumDims

integer CDFgetrVarsNumDims(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numDims as integer) ¢ out -- Number of dimensions.

13

CDFgetrVarsNumDims returns the number of dimensions (dimensionality) for the rVariables in a CDF.
The arguments to CDFgetrVarsNumDims are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numDims Number of dimensions.

4.3.39.1. Example(s)

The following example returns the number of dimensions for rVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try

status = CDFgetrVarsNumDims (id, numDims)
catch ex as Exception
end try

4.3.40 CDFgetrVarSparseRecords

integer CDFgetrVarSparseRecords(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, ¢ in -- The variable number.

3

96

3

sRecordsType as integer) out -- The sparse records type.
CDFgetrVarSparseRecords returns the sparse records type of the rVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

The arguments to CDFgetrVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum Variable number.

sRecordsType Sparse records type.

4.3.40.1. Example(s)
The following example returns the sparse records type of the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.
try
status = CDFgetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType) ...
catch ex as Exception
end try
4.3.41 CDFgetVarNum 3

integer CDFgetVarNum(¢ out -- Variable number.
id as long, ¢ in -- CDF identifier.
varName as string) ‘¢ in -- Variable name.

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type int) is returned, and an exception is thrown. Error
codes are less than zero (0). The returned variable number should be used in the functions of the same variable type,
rVariable or zVariable. If it is an rVariable, functions dealing with rVariables should be used. Similarly, functions for
zVariables should be used for zVariables.

The arguments to CDFgetVarNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName Name of the variable to search. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

8 Since no two variables, either rVariable or zVariable, can have the same name, this function now returns the variable
number for the given rVariable or zVariable name (if the variable name exists in a CDF).

97

4.3.41.1. Example(s)

In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable

dim id as longid ¢ CDF identifier.

Dim status as integer Returned status code.

Dim varName as string Variable name.

Dim dataType as integer Data type of the zVariable.

Dim numElements as integer Number of elements (of the data type).
Dim numDims as integer Number of dimensions.

Dim dimSizes() as integer Dimension sizes.

Dim recVariance as integer Record variance.

Dim dimVariances() as integer Dimension variances.

try
status = CDFinquirezVar (id, CDFgetVarNum (id,"LATITUDE"), varName, dataType, _
numElements, numDims, dimSizes , recVariance, dimVariances)

catch ex as Exception
end try

In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar
would be used to determine them. CDFinquirezVar is described in Section 4.3.66.

4.3.42 CDFgetzVarAllocRecords

integer CDFgetzVarAllocRecords(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Allocated number of records.

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum zVariable number.

numRecs Number of allocated records.

4.3.42.1. Example(s)
The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.

98

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.

Dim numRecs as integer ¢ The allocated records.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetzVarAllocRecords (id, varNum, numRecs)

c;t.ch ex as Exception
end try
4.3.43 CDFgetzVarBlockingFactor

integer CDFgetzVarBlockingFactor(
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
bf as integer) out -- Blocking factor.

out -- Completion status code.

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s

Guide for a description of the blocking factor.

The arguments to CDFgetzVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

bf Blocking factor. A value of zero (o) indicates that the default blocking factor will be used.

4.3.43.1. Example(s)
The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim bf as integer ¢ The blocking factor.

dim status as integer
try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarBlockingFactor (id, varNum, bf) .
catch ex as Exception

end try

99

4.3.44 CDFgetzVarCacheSize

integer CDFgetzVarCacheSize(¢ out -- Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer, ¢ in -- Variable number.

numBuffers as integer) out -- Number of cache
CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

3

The arguments to CDFgetzVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numBuffers Number of cache buffers.

4.3.44.1. Example(s)
The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarCacheSize (id, varNum, numBuffers)

catch ex as Exception
end try
4.3.45 CDFgetzVarCompression

integer CDFgetzVarCompression(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetzVarCompression returns the compression type/parameters and compression percentage of the specified
zVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,

uncompressed variable size.

The arguments to CDFgetzVarCompression are defined as follows:

100

id

varNum
compType
cParms

cPct

4.3.45.1. Example(s)

Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

zVariable number.
Compression type.
Compression parameters.

Percentage of the uncompressed size of zVariable’s data values needed to store the
compressed values.

The following example returns the compression information for zVariable “MY_VAR” in a CDF.

dim id as long
Dim varNum as integer

¢ CDF identifier.
¢ zVariable number.

Dim compType as integer ¢ The compression type.
Dim cParms() as integer ¢ The compression parameters.

Dim cPct as integer
Dim status as integer.

try

¢ The compression percentage.

varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVar

catch ex as Exception

end try

Compression (id, varNum, compType, cParms, cPct)

4.3.46 CDFgetzVarData

integer CDFgetzVarData(
id as long,

varNum as integer,

dim recNum as integer,
indices as integer(),

value as TYPE)

CDFgetzVarData returns a

out -- Completion status code.

¢ in -- CDF identifier.

in -- Variable number.

in -- Record number.

in -- Dimension indices.

out -- Data value.

* TYPE -- VB value/string type or object.

data value from the specified indices, the location of the element, in the given record of the

specified zVariable in a CDF.

The arguments to CDFgetzVarData are defined as follows:

id

varNum

recNum

Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

zVariable number.

Record number.

101

indices Dimension indices within the record.

value Data value.

4.3.46.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long CDF identifier.

Dim varNum as integer zVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
status = CDFgetzVarData (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
object value2o
status = CDFgetzVarData (id, varNum, recNum, indices, value20)
value2 = value2o

catch ex as Exception
end try

4.3.47 CDFgetzVarDataType

integer CDFgetzVarDataType(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) out -- Data type.

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.

The arguments to CDFgetzVarDataType are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType Data type.

102

4.3.47.1. Example(s)
The following example returns the data type of zVariable “MY_ VAR” ina CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim dataType as integer ¢ The data type.
Dim status as integer.

:cry
“\'/'arNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetzVarDataType (id, varNum, dataType)
ca'l.t.ch ex as Exception
end try
4.3.48 CDFgetzVarDimSizes

integer CDFgetzVarDimSizes(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimSizes as integer) out -- Dimension sizes.

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDFgetzVarDimSizes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum zVariable number

dimSizes Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.48.1. Example(s)
The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim dimSizes() as integer ¢ Dimensional sizes.
Dim status as integer

Ary

status = CDFgetzVarDimSizes (id, CDFgetVarNum (id, “MY_VAR”), dimSizes)

catch ex as Exception

103

end try

4.3.49 CDFgetzVarDimVariances

integer CDFgetzVarDimVariances(out --

Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer,

dimVarys as integer()) out --

in -- Variable number.

Dimension variances.

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetzVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dimVarys Dimension variances.

4.3.49.1. Example(s)

been initialized by a call to

The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dimVarys() as integer ¢ The dimension variances.

Dim status as integer.

try

status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

catch ex as Exception
end try

4.3.50 CDFgetzVarlnfo

integer CDFgetzVarlnfo(¢ out -- Completion status code.
id as long, * in-- CDF identifier.

varNum as integer, ¢ in -- Variable number.
dataType as integer, ¢ out -- Data type.

numElems as integer, ¢ out -- Number of elements.
numDims as integer, ¢ out -- Number of dimensions.
dimSizes as integer()) ¢ out -- Dimension sizes.

CDFgetzVarlnfo returns the basic information about the specified zVariable in a CDF.
The arguments to CDFgetzVarlnfo are defined as follows:

id Identifier of the current CDF. This identifier must have
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

104

been initialized by a call to

varNum zVariable number.

dataType Data type of the variable.

numElems Number of elements for the data type of the variable.
numDims Number of dimensions.

dimSizes Dimension sizes.

4.3.50.1. Example(s)

The following example returns the basic information of zVariable “MY_VAR” in a CDF.

dim id as long

Dim dataType as integer
Dim numElems as integer
Dim numDims as integer
Dim dimSizes() as integer
Dim status as integer.

try

CDF identifier.

¢ The data type.

The number of elements.

¢ The number of dimensions.

The dimension sizes.

status = CDFgetzVarlnfo (id, CDFgetVarNum (id, “MY_VAR”), dataType, numElems,

numDims, dimVarys)

ca'l.t.ch ex as Exception
end try
4.3.51 CDFgetzVarMaxAllocRecNum

integer CDFgetzVarMaxAllocRecNum(
id as long,

varNum as integer,

maxRec as integer)

out -- Completion status code.

in -- CDF identifier.

in -- Variable number.

out -- Maximum allocated record #.

CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDEF.
varNum zVariable number.

maxRec Number of records allocated.

4.3.51.1. Example(s)

The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

105

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
dim status as integer

try

status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
catch ex as Exception
end try

4.3.52 CDFgetzVarMaxWrittenRecNum

integer CDFgetzVarMaxWrittenRecNum (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetzVarMax WrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

maxRec Maximum written record number.

4.3.52.1. Example(s)

The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer

try
status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
catch ex as Exception
end try
4.3.53 CDFgetzVarName

integer CDFgetzVarName(out -- Completion status code.
id as long, * in-- CDF identifier.

3

106

3

in -- Variable number.
out -- Variable name.

varNum as integer,
varName as string)

CDFgetzVarName returns the name of the specified zVariable, by its number, in a CDF.

The arguments to CDFgetzVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum zVariable number.

varName Name of the variable.

4.3.53.1. Example(s)

The following example returns the name of the zVariable whose variable number is 1.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim varName as string ¢ The name of the variable.
Dim status as integer.

varNum = 1
try

status = CDFgetzVarName (id, varNum, varName)

ca'l.t.ch ex as Exception
end try
4.3.54 CDFgetzVarNumDims

integer CDFgetzVarNumDims(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
numDims as integer) out -- Number of dimensions.
CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.

The arguments to CDFgetzVarNumDims are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum zVariable number

numDims Number of dimensions.

4.3.54.1. Example(s)
The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

107

dim id as long ¢ CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try

status = CDFgetzVarNumDims (id, CDFgetVarNum (id, “MY_VAR”), numDims)
catch ex as Exception
end try

4.3.55 CDFgetzVarNumElements

integer CDFgetzVarNumElements(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numElems as integer) out -- Number of elements.
CDFgetzVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetzVarNumElements are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numElems Number of elements.

4.3.55.1. Example(s)
The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim numElems as integer ¢ The number of elements.
Dim status as integer.

:Lry
's.’;'c'ltus = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) ...
ca-l.t.ch ex as Exception
end try
4.3.56 CDFgetzVarNumRecsWritten

integer CDFgetzVarNumRecsWritten(out -- Completion status code.
id as long, * in-- CDF identifier.

13

108

3

in -- Variable number.
out -- Number of written records.

varNum as integer,
numRecs as integer)

3

CDFgetzVarNumRecsWritten returns the number of records written for the specified zVariable in a CDF. This number
may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum zVariable number.

numRecs Number of written records.

4.3.56.1. Example(s)

The following example returns the number of written records from zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try

status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

ca'l.t.ch ex as Exception
end try
4.3.57 CDFgetzVarPadValue

integer CDFgetzVarPadValue(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ out -- Pad value.

* TYPE -- VB value/string type or object
CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is thrown
while trying to get its value if its value is not set. It’s recommended to check the returned status after the method is
called.

The arguments to CDFgetzVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Pad value.

109

4.3.57.1. Example(s)
The following example returns the pad value from zVariable “MY_ VAR”, a CDF INT4 type variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

try
dim padValueo as object
status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
if status <> NO PADVALUE SPECIFIED then

. padValue = Ctype(padValueo, integer)
end if

catch ex as Exception
end try

4.3.58 CDFgetzVarRecordData

integer CDFgetzVarRecordData(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

buffer as TYPE) ¢ out -- Record data.

* TYPE -- VB value/string type (likely an
array) or object
CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetzVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
recNum Record number.
buffer The buffer holding the entire record data.

4.3.58.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from zVariable “MY_ VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim buffer1(2,3) as integer ¢ The data holding buffer — pre-allocation.

110

Dim buffer2 as object ¢ The data holding buffer — API allocation.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarRecordData (id, varNum, 2, bufferl)
status = CDFgetzVarRecordData (id, varNum, 5, buffer2)

catch ex as Exception
end try

4.3.59 CDFgetzVarRecVariance

integer CDFgetzVarRecVariance(
id as long,

varNum as integer,

recVary as integer)

CDFgetzVarRecVariance returns the record variance of the specified zVariable
described in Section 2.10.
The arguments to CDFgetzVarRecVariance are defined as follows:

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Record variance.

in a CDF. The record variances are

id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum zVariable number.

recVary Record variance.

4.3.59.1. Example(s)

The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

dim id as long
Dim recVary as integer
dim status as integer

try

¢ CDF identifier.
¢ The record variance.

status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary) ...

catch ex as Exception
end try

4.3.60 CDFgetzVarReservePercent

integer CDFgetzVarReservePercent(
id as long,

varNum as integer,

percent as integer)

111

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Reserved percentage.

CDFgetzVarReservePercent returns the compression reserved percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

percent Reserved percentage.

4.3.60.1. Example(s)

The following example returns the compression reserved percentage from the compressed zVariable “MY VAR” in a
CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The compression reserved percentage.
Dim status as integer.

try
status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)
catch ex as Exception
end try
4.3.61 CDFgetzVarSeqData

integer CDFgetzVarSeqData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ out -- Data value.
* TYPE -- VB value/string type or object

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDFsetzVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number from which to read data.

value The buffer to store the value.

112

4.3.61.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional

zVariable whose data type is CDF_INT4) in a CDF.

dim id as long

Dim varNum as integer

Dim valuel as integer, value2 as integer
Dim indices(2) as integer

Dim recNum as integer

Dim status as integer.

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFgetzVarSeqData (id, varNum, valuel)

dim value2o as object

status = CDFgetzVarSeqData (id, varNum, value20)
value2 = value2o

c;t.ch ex as Exception
end try
4.3.62 CDFgetzVarSeqPos

integer CDFgetzVarSeqPos(
id as long,

varNum as integer,

recNum as integer,

indices as integer())

3

13

3

13

CDF identifier.

The variable number from which to read data
The data value.

The indices in a record.

The record number.

out -- Completion status code.
‘ in -- CDF identifier.

in -- Variable number.

out -- Record number.

out -- Indices in a record.

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFsetzVarSeqPos

method to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum zVariable number.
recNum zVariable record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index.

For 0-dimensional zVariable, this argument is ignored, but must be presented.

113

4.3.62.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The record number.
Dim indices() as integer ¢ The indices.

Dim status as integer.
:cry
”s.t'atus = CDFgetzVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
;:.a-ltch ex as Exception
end try
4.3.63 CDFgetzVarsMaxWrittenRecNum

integer CDFgetzVarsMaxWrittenRecNum(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
recNum as integer) ¢ out -- Maximum record number.

3

CDFgetzVarsMax WrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record
number for an individual zVariable may be acquired using the CDFgetzVarMax WrittenRecNum method call.

Suppose there are three zVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum Maximum written record number.

4.3.63.1. Example(s)

The following example returns the maximum record number for all of the zVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The maximum record number.
dim status as integer
try
status = CDFgetzVarsMax WrittenRecNum (id, recNum)

catch ex as Exception

114

end try

4.3.64 CDFgetzVarSparseRecords

integer CDFgetzVarSparseRecords(
id as long,

varNum as integer,

sRecordsType as integer)

out -- Completion status code.
‘ in -- CDF identifier.

in -- The variable number.

out -- The sparse records type.

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 2.12.1 for the

description of sparse records.

The arguments to CDFgetzVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum Variable number.

sRecordsType Sparse records type.

4.3.64.1. Example(s)

The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.

dim id as long
Dim sRecordsType as integer
dim status as integer

try

¢ CDF identifier.
¢ The sparse records type.

status = CDFgetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType) ...

catch ex as Exception
end try

4.3.65 CDFhyperGetrVarData

integer CDFhyperGetrVarData(¢ out -- Completion status code.

id as long, * in-- CDF identifier.

varNum as integer, ‘ in -- rVariable number.

recStart as integer, ¢ in -- Starting record number.

recCount as integer, ¢ in -- Number of records.

recInterval as integer, ‘ in -- Reading interval between records.
indices as integer(), ¢ in -- Dimension indices of starting value.
counts as integer(), ¢ in -- Number of values along each dimension.
intervals as integer(), ¢ in -- Reading intervals along each dimension.
buffer as TYPE) ¢ out -- Buffer of values.

¢ TYPE -- VB value/string type (likely an array)

or object

CDFhyperGetrVarData is used to read one or more values for the specified rVariable. It is important to know the
variable majority of the CDF before using this method because the values placed into the data buffer will be in that

115

majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetrVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start reading.

recCount Number of records to read.

reclnterval The reading interval between records (e.g., an interval of 2 means read every other record).

indices Dimension indices (within each record) at which to start reading. Each element of indices

specifies the corresponding dimension index. For 0-dimensional rVariable, this argument is
ignored (but must be present).

counts Number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariable, this argument is ignored (but must
be present).

intervals For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariable, this argument is ignored (but must be present).

buffer The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirerVar can be
used to determine the rVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.65.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14™ record), from a rVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are (VARY,VARY,VARY), and the data type
is CDF_REAL4. This example is similar to the CDFgetrVarData example except that it uses a single call to
CDFhyperGetrVarData (rather than numerous calls to. CDFgetrVarData).

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim tmp(,,,) as single Temperature values.

Dim varN as integer rVariable number.

Dim recStart as integer = 13 Start record number.

Dim recCount as integer = 3 Number of records to read

Dim recInterval as integer = 1 Record interval — read every record

116

Dim indices() as integer = {0,0,0} ¢ Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} ¢ Dimension intervals — read all
try
status = CDFhyperGetrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals,
tmp)

catch ex as Exception
end try

Note that if the CDF's variable majority had been COLUMN_ MAJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.66 CDFhyperGetzVarData

integer CDFhyperGetzVarData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, ‘ in -- zVariable number.

recStart as integer,
recCount as integer,
recInterval as integer,
indices as integer(),

in -- Starting record number.

in -- Number of records.

in -- Reading interval between records.

in -- Dimension indices of starting value.

counts as integer(), ¢ in -- Number of values along each dimension.
intervals as integer(), ¢ in -- Reading intervals along each dimension.
buffer as TYPE) ¢ out -- Buffer of values.
* TYPE -- VB value/string type (likely an array)
‘ or object.

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the
variable majority of the CDF before using this method because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetzVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start reading.

recCount Number of records to read.

reclnterval Reading interval between records (e.g., an interval of 2 means read every other record).

117

indices

counts

intervals

buffer

Dimension indices (within each record) at which to start reading. Each element of indices
specifies the corresponding dimension index. For 0-dimensional zVariable, this argument is
ignored (but must be present).

Number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For O-dimensional zVariable, this argument is ignored (but
must be present).

For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariable, this argument is ignored (but must be present).

The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirezVar can be
used to determine the zVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.66.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14™ record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are {VARY,VARY,VARY}, and the data
type is CDF_REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

dim id as long

Dim status as integer

Dim tmp(,,,) as single

Dim varN as integer

Dim recStart as integer = 13
Dim recCount as integer = 3
Dim recInterval as integer = 1
Dim indices() as integer = {0,0,0}

¢ CDF identifier.

Returned status code.

Temperature values.

zVariable number.

Start record number.

Number of records to read

Record interval — read every record
Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.

Dim intervals() as integer = {1,1,1}

try

Dimension intervals — read all

varN = CDFgetVarNum (id, "Temperature")

status = CDFhyperGetzVarData (id, varN, recStart, recCount, reclnterval, indices, counts, intervals,

tmp)

catch ex as Exception

end try

Note that if the CDF's variable majority had been COLUMN_ MAIJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.67 CDFhyperPutrVarData

integer CDFhyperPutrVarData(‘ out -- Completion status code.

id as long,

¢ in -- CDF identifier.

118

in -- rVariable number.

recStart as integer, in -- Starting record number.

recCount as integer, in -- Number of records.

recInterval as integer, ¢ in -- Writing interval between records.
indices as integer(), in -- Dimension indices of starting value.
counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Writing intervals along each dimension.
buffer as TYPE) ¢ in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

varNum as integer,

CDFhyperPutrVarData is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11% record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,
and 1, respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and
intervals for scalar variables.

The arguments to CDFhyperPutrVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start writing.

recCount Number of records to write.

recInterval Interval between records for writing (e.g., an interval of 2 means write every other record).

indices Indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional rVariable this argument is ignored (but must
be present).

counts Number of values along each dimension to write. FEach element of counts specifies the
corresponding dimension count. For 0-dimensional rVariable this argument is ignored (but must
be present).

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.67.1. Example(s)

The following example writes 2 records to a rVariable named LATITUDE that is a 1-dimensional array with dimension
sizes (181). The dimension variances are {VARY}, and the data type is CDF _INT2. This example is similar to the
CDFputrVarData example except that it uses a single call to CDFhyperPutrVarData rather than numerous calls to
CDFputrVarData.

119

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim i as integer, j as integer Latitude value.

Dim lats(2,181) as short ¢ Buffer of latitude values.
Dim varN as integer rVariable number.
Dim recStart as integer = 0 Record number.

Dim recCount as integer = 2 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0} Dimension indices.
Dim counts() as integer = {181} Dimension counts.
Dim intervals() as integer = {1} Dimension intervals.

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 tol
forj=-90 to 90
lats(i,90+1at) = Ctype(j, short)
next j
next i

...status = CDFhyperPutrVarData (id, varN, recStart, recCount, reclnterval, indices, counts, intervals, lats)

ca'l.t.ch ex as Exception
end try
4.3.68 CDFhyperPutzVarData

integer CDFhyperPutzVarData(¢ out -- Completion status code.

id as long, * in-- CDF identifier.

varNum as integer, in -- zVariable number.

recStart as integer, in -- Starting record number.

recCount as integer, in -- Number of records.

recInterval as integer, ¢ in -- Writing interval between records.
indices as integer(), in -- Dimension indices of starting value.
counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Writing intervals along each dimension.
buffer as TYPE) ‘ in -- Buffer of values.

TYPE -- VB value/string type (likely an array).

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11% record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,
and 1, respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and

intervals for scalar variables.

The arguments to CDFhyperPutzVarData are defined as follows:

120

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start writing.

recCount Number of records to write.

recnterval Interval between records for writing (e.g., an interval of 2 means write every other record).

indices Indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional zVariable this argument is ignored (but must
be present).

counts Number of values along each dimension to write. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable this argument is ignored (but must
be present).

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.68.1. Example(s)

The following example writes 2 records to a zVariable named LATITUDE that is a 1-dimensional array with
dimension sizes (181). The dimension variances are {VARY}, and the data type is CDF_INT2. This example is
similar to the CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than
numerous calls to CDFputzVarData.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.

Dim i as integer, j as integer
Dim lats(2,181) as short

Dim varN as integer

Dim recStart as integer = 0
Dim recCount as integer = 2
Dim recInterval as integer = 1
Dim indices() as integer = {0}
Dim counts() as integer = {181}
Dim intervals() as integer = {1}

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 to 1l

forj= -90 to 90
lats(i,90+1at) = Ctype(j, short)

121

Latitude value.

Buffer of latitude values.
zVariable number.
Record number.

Record counts.

Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

next j
next i

...status = CDFhyperPutzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception

end try

4.3.69 CDFinquirerVar

integer CDFinquirezVar(
id as long,

varNum as integer,
varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,

dimVariances as integer())

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Number of dimensions.

out -- Dimension sizes

out -- Record variance.

out -- Dimension variances.

CDFinquirerVar is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFgetrVarData or CDFhyperGetrVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id
varNum
varName

dataType
numElements

numDims

dimSizes

recVariance

dimVariances

4.3.69.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Number of the rVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

rVariable's name.

Data type of the rVariable. The data types are defined in Section 2.6.

Number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions.

Dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

Record variance. The record variances are defined in Section 2.10.

Dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are described in Section 2.10. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about a rVariable named HEAT FLUX in a CDF.

122

dim id as long

Dim status as integer
Dim varName as string
Dim dataType as integer

Dim numElems as integer

Dim recVary as integer
Dim numDims as integer

Dim dimSizes() as integer
Dim dimVarys() as integer

try

¢ CDF identifier.

Returned status code.

rVariable name.

¢ Data type of the rVariable.
Number of elements (of data type).
Record variance.

Number of dimensions.

Dimension sizes

Dimension variances

status = CDFinquirerVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType, _

catch ex as Exception

end try

numElems, numDims, dimSizes, recVary, dimVarys)

4.3.70 CDFinquirezVar

integer CDFinquirezVar(
id as long,

varNum as integer,
varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer())

out -- Completion status code.

¢ in -- CDF identifier.

in -- zVariable number.

out -- zVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Number of dimensions.

out -- Dimension sizes

out -- Record variance.

out -- Dimension variances.

CDFinquirezVar is used to inquire about the specified zVariable. This method would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id

varNum

varName
dataType

numElements

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Number of the zVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

zVariable's name.
Data type of the zVariable. The data types are defined in Section 2.6.

Number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string. (Each

123

numDims

dimSizes

recVariance

dimVariances

4.3.70.1. Example(s)

value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions.

Dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

Record variance. The record variances are defined in Section 2.10.

Dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are described in Section 2.10. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about an zVariable named HEAT FLUX in a CDF.

dim id as long

Dim status as integer
Dim varName as string
Dim dataType as integer

Dim numElems as integer

Dim recVary as integer
Dim numDims as integer

Dim dimSizes() as integer
Dim dimVarys() as integer

try

¢ CDF identifier.

Returned status code.

zVariable name.

Data type of the zVariable.
Number of elements (of data type).
Record variance.

Number of dimensions.

Dimension sizes

Dimension variances

status = CDFinquirezVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,

catch ex as Exception

end try

numElems, numDims, dimSizes, recVary, dimVarys)

4.3.71 CDFputrVarData

integer CDFputrVarData(
id as long,

varNum as integer,
recNum as integer,
indices as integer(),
value as TYPE)

out -- Completion status code.
‘ in -- CDF identifier.

in -- Variable number.

¢ in -- Record number.

in -- Dimension indices.
in -- Data value.

* TYPE -- VB value/string type

CDFputrVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFputrVarData are defined as follows:

124

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum rVariable number.

recNum Record number.

indices Dimension indices within the record.
value Data value.

4.3.71.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from rVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF _DOUBLE type variable, in a row-major CDF. The first put operation
passes the pointer of the data value, while the second operation passes the data value as an object.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim recNum as integer ¢ The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum = 0
indices(0) =0
indices(1) =0
valuel =10.1
status = CDFputrVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFputrVarData (id, varNum, recNum, indices, value2)

catch ex as Exception

end try

4.3.72 CDFputrVarPadValue

integer CDFputrVarPadValue(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer,

3

in -- Variable number.

value as TYPE) ¢ in -- Pad value.

‘ TYPE — VB value/string type

CDFputrVarPadValue specifies the pad value for the specified rVariable in a CDF. A rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

125

The arguments to CDFputrVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value Pad value.

4.3.72.1. Example(s)

The following example sets the pad value to —9999 for rVariable “MY_ VAR”, a CDF INT4 type variable, and
«xF*xE for another rVariable “MY VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long ¢ CDF identifier.

Dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue?2 as string = “#****> ¢ A string pad value. °
try

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValuel)

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR?2”), padValue2)

ca-l.t.ch ex as Exception
end try
4.3.73 CDFputrVarRecordData

integer CDFputrVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

buffer as TYPE) ¢ in -- Record data.
¢ TYPE -- VB value/string type (likely an
‘ array)

CDFputrVarRecordData writes an entire record at a given record number for the specified rVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputrVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
recNum Record number.
buffer The buffer holding the entire record values.

126

4.3.73.1. Example(s)

The following example will write one full record (numbered 2) from rVariable “MY_VAR”, a 2-dimension (2 by 3),
CDF _INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim buffer(2,3) as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.
try

varNum = CDFvarNum (id,”"MY_VAR”)
status = CDFputrVarRecordData (id, varNum, 2, buffer)

catch ex as Exception

end try

4.3.74 CDFputrVarSeqData

integer CDFputrVarSeqData(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Data value.
* TYPE -- VB value/string type

CDFputrVarSeqData writes one value to the specified rVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetrVarSeqPos method to set the current sequential value (position).

The arguments to CDFputrVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value The buffer holding the data value.

4.3.74.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional rVariable whose
data type is CDF _INT4. The first write will pass in a pointer from the data value, while the second write will pass in
the data value object directly.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number.
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
Dim recNum as integer The record number.

3

3

127

dim status as integer

recNum = 2
indices(0) = 1
indices(1) =2

try
valuel =10
value2 = -20.

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFputrVarSeqData (id, varNum, valuel)
status = CDFputrVarSeqData (id, varNum, value2)

ca-l.t.ch ex as Exception
end try
4.3.75 CDFputzVarData

integer CDFputzVarData(
id as long,

varNum as integer,
recNum as integer,
indices as integer(),

value as TYPE)

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

in -- Record number.

in -- Dimension indices.

in -- Data value.

TYPE -- VB value/string type

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the

specified zVariable in a CDF.

The arguments to CDFputzVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

indices Dimension indices within the record.
value Data value.

4.3.75.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF _DOUBLE type variable, in a row-major CDF. The first put operation
passes the pointer of the data value, while the second operation passes the data value as an object.

dim id as long

dim varNum as integer

dim recNum as integer

Dim indices(2) as integer

Dim valuel as double, value2 as double

128

¢ CDF identifier.

¢ zVariable number.
The record number.
The dimension indices.
The data values.

3

13

3

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum = 0
indices(0) =0
indices(1) =0
valuel = 10.1
status = CDFputzVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFputzVarData (id, varNum, recNum, indices, value2)

ca'l.t.ch ex as Exception
end try
4.3.76 CDFputzVarPadValue

integer CDFputzVarPadValue(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Pad value.
* TYPE -- VB value/string type

CDFputzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputzVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Pad value.

4.3.76.1. Example(s)

The following example sets the pad value to —9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, and
cxdExE for another zVariable “MY_ VAR2”, a CDF _CHAR type with a number of elements of five (5), in a CDF.

dim id as long ¢ CDF identifier.
dim padValuel as integer =-9999 ¢ An integer pad value.
Dim padValue?2 as string = “##***> ¢ A string pad value. °

Dim status as integer.
try

status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), padValuel)

129

status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)

C;t.Ch ex as Exception
end try
4.3.77 CDFputzVarRecordData

integer CDFputzVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

buffer as TYPE) ¢ in -- Record data.
¢ TYPE -- VB value/string type (likely an
‘ array)

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
recNum Record number.
buffer The buffer holding the entire record values.

4.3.77.1. Example(s)

The following example will write one full record (numbered 2) from zVariable “MY_VAR”, a 2-dimension (2 by 3),
CDF _INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.

Dim buffer(,)as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.
Dim status as integer

try
varNum = CDFvarNum (id,”"MY_VAR”)
status = CDFputzVarRecordData (id, varNum, 2, buffer)
catch ex as Exception
end try
4.3.78 CDFputzVarSeqData
integer CDFputzVarSeqData(

13

out -- Completion status code.

130

id as long,
varNum as integer,
value as TYPE)

The arguments to CDFputzVarSeqData are defined as follows:

3

3

3

3

in -- CDF identifier.

in -- Variable number.

in -- Data value.

TYPE -- VB value/string type

CDFputzVarSeqData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos method to set the current sequential value (position).

id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value The buffer holding the data value.

4.3.78.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in
the data value object directly.

dim id as long

dim varNum as integer

dim valuel as integer, value2 as integer
Dim indices(2) as integer

dim recNum as integer

Dim status as integer

recNum = 2
indices(0) = 1
indices(1) =2

try
valuel =10
value2 = -20.

status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFputzVarSeqData (id, varNum, valuel)
status = CDFputzVarSeqData (id, varNum, value2)

catch ex as Exception

end try

4.3.79 CDFrenamerVar

integer CDFrenamerVar(
id as long,

varNum as integer,
varName as string)

131

¢ CDF identifier.

¢ The variable number.
The data value.

The indices in a record.
The record number.

3

3

out -- Completion status code.
in -- CDF identifier.

in -- rVariable number.

in -- New name.

CDFrenamerVar is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

The arguments to CDFrenamerVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the rVariable to rename. This number may be determined with a call to
CDFgetVarNum.

varName The new rVariable name. This may be at most CDF VAR NAME LEN256 characters.

Variable names are case-sensitive.

4.3.79.1. Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an rVariable number but rather an error code.

dim id as long
dim status as integer
dim varNum as integer

try
varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamerVar (id, varNum, "TMP")

catch ex as Exception
end try
4.3.80 CDFrenamezVar

integer CDFrenamezVar(
id as long,

varNum as integer,
varName as string)

¢ CDF identifier.
¢ Returned status code.
¢ zVariable number.

out -- Completion status code.
in -- CDF identifier.

in -- zVariable number.

in -- New name.

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name

must not already exist in the CDF.

The arguments to CDFrenamezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

varNum Number of the zVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new zVariable name. This may be at most CDF_ VAR NAME LEN256 characters.

Variable names are case-sensitive.

132

4.3.80.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather an error code.

dim id as long * CDF identifier.
dim status as integer ¢ Returned status code.
dim varNum as integer ¢ zVariable number.

try

varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamezVar (id, varNum, "TMP")

ca'l.t.ch ex as Exception
end try
4.3.81 CDFsetrVarAllocBlockRecords

integer CDFsetrVarAllocBlockRecords(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
firstRec as integer, in -- First record number.
lastRec as integer) in -- Last record number.

CDFsetrVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified rVariable in a
CDF. This operation is only applicable to uncompressed rVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocBlockRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.81.1. Example(s)
The following example allocates 10 records, from record numbered 10 to 19, for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
Dim status as integer.

firstRec = 10
lastRec =19

133

try

status = CDFsetrVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR”), firstRec, lastRec)

ca'l.t.ch ex as Exception
end try
4.3.82 CDFsetrVarAllocRecords

integer CDFsetrVarAllocRecords(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetrVarAllocRecords specifies a number of records to be allocated (not written) for the specified rVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
rVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of records to allocate.

4.3.82.1. Example(s)
The following example allocates 100 records, from record numbered 0 to 99, for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim numRecs as integer ¢ The number of records.
dim status as integer

numRecs = 100
try

status = CDFsetrVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception
end try

4.3.83 CDFsetrVarBlockingFactor

integer CDFsetrVarBlockingFactor(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

134

CDFsetrVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified rVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetrVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.83.1. Example(s)
The following example sets the blocking factor to 100 records for rVariable “MY_ VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim bf as integer ¢ The blocking factor.
dim status as integer

bf=100
try

status = CDFsetrVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

ca'l.t.ch ex as Exception
end try
4.3.84 CDFsetrVarCacheSize

integer CDFsetrVarCacheSize(‘ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

numBuffers as integer) in -- Number of cache buffers.
CDFsetrVarCacheSize specifies the number of cache buffers being for the rVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetrVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum rVariable number.

numBuffers Number of cache buffers.

4.3.84.1. Example(s)
The following example sets the number of cache buffers to 10 for rVariable “MY_VAR” in a CDF.

135

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

numBuffers = 10
try

status = CDFsetrVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)
catch ex as Exception
end try

4.3.85 CDFsetrVarCompression

integer CDFsetrVarCompression(out -- Completion status code.

id as long, ¢ in-- CDF identifier.
varNum as integer, ‘¢ in -- Variable number.
compType as integer, ¢ in -- Compression type.

cParms as integer()) in -- Compression parameters.

CDFsetrVarCompression specifies the compression type/parameters for the specified rVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.

The arguments to CDFsetrVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum rVariable number.
compType The compression type.
cParms The compression parameters.

4.3.85.1. Example(s)
The following example sets the compression to GZIP.6 for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim compType as integer ¢ The compression type.
Dim cParms(1) as integer ¢ The compression parameters.

dim status as integer

compType = GZIP_ COMPRESSION
cParms(0) =6
try

status = CDFsetrVarCompression (id, CDFgetVarNum (id, “MY_VAR”), compType, cParms)

136

c;t.ch ex as Exception
end try
4.3.86 CDFsetrVarDataSpec

integer CDFsetrVarDataSpec(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) in -- Data type.

CDFsetrVarDataSpec respecifies the data type of the specified rVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are
equivalent. Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetrVarDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum rVariable number.

dataType The new data type.

4.3.86.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF UINT2) for rVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status as integer.

dataType = CDF_INT2
try

status = CDFsetrVarDataSpec (id, CDFgetVarNum (id, “MY_VAR”), dataType)

catch ex as Exception
end try

4.3.87 CDFsetrVarDimVariances

integer CDFsetrVarDimVariances(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetrVarDimVariances respecifies the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

137

The arguments to CDFsetrVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dimVarys Dimension variances.

4.3.87.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for rVariable “MY_VAR”, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.
dim varNum as integer ¢ rVariable number.
Dim dimVarys() as integer = {VARY, VARY} ¢ The dimension variances.
dim status as integer
try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFsetrVarDimVariances (id, varNum, dimVarys)

catch ex as Exception
end try

4.3.88 CDFsetrVarlnitialRecs

integer CDFsetrVarlnitialRecs(‘ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetrVarlnitialRecs specifies a number of records to initially write to the specified rVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per rVariable and before any other
records have been written to that rVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetrVarlnitialRecs are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum rVariable number.

numRecs Initially written records.

4.3.88.1. Example(s)
The following example writes the initial 100 records to rVariable “MY_VAR” in a CDF.

138

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ rVariable number.

dim numRecs as integer ¢ The number of records.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
numRecs = 100
status = CDFsetrVarlnitialRecs (id, varNum, numRecs)
catch ex as Exception
end try
4.3.89 CDFsetrVarRecVariance

integer CDFsetrVarRecVariance(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

CDFsetrVarRecVariance specifies the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFsetrVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum rVariable number.

recVary Record variance.

4.3.89.1. Example(s)
The following example sets the record variance to VARY (from NOVARY) for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim recVary as integer ¢ The record variance.
Dim status as integer.

recVary = VARY
try

status = CDFsetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary)
catch ex as Exception

end try

139

4.3.90 CDFsetrVarReservePercent

integer CDFsetrVarReservePercent(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) in -- Reserve percentage.

CDFsetrVarReservePercent specifies the compression reserve percentage being used for the specified rVariable in a
CDF. This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetrVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

percent The reserve percentage.

4.3.90.1. Example(s)
The following example sets the reserve percentage to 10 for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim percent as integer ¢ The reserve percentage.
Dim status as integer.

percent = 10
try

status = CDFsetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)

catch ex as Exception
end try

4.3.91 CDFsetrVarsCacheSize

integer CDFsetrVarsCacheSize(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffers as integer) ¢ in -- Number of cache buffers.

CDFsetrVarsCacheSize specifies the number of cache buffers to be used for all of the rVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

The arguments to CDFsetrVarsCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

140

numBuffers Number of buffers.

4.3.91.1. Example(s)

The following example sets the number of cache buffers to 10 for all rVariables in a CDF.

dim id as long ¢ CDF identifier.
dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try

status = CDFsetrVarsCacheSize (id, numBuffers)

ca'l.t.ch ex as Exception
end try
4.3.92 CDFsetrVarSeqPos

integer CDFsetrVarSeqPos(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer()) in -- Indices in a record.

CDFsetrVarSeqPos specifies the current sequential value (position) for sequential access for the specified rVariable in
a CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFgetrVarSeqPos
method to get the current sequential value.

The arguments to CDFsetrVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
recNum rVariable record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index.

For 0-dimensional rVariable, this argument is ignored, but must be presented.

4.3.92.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a rVariable, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ The variable number.

141

dim recNum as integer ¢ The record number.
Dim indices(2) as integer ¢ The indices.

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
catch ex as Exception
end try

4.3.93 CDFsetrVarSparseRecords

integer CDFsetrVarSparseRecords(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

CDFsetrVarSparseRecords specifies the sparse records type of the specified rVariable in a CDF. Refer to Section
2.12.1 for the description of sparse records.

The arguments to CDFsetrVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

sRecordsType The sparse records type.

4.3.93.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for rVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.
sRecordsType = PAD _SPARSERECORDS
try
status = CDFsetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType)
catch ex as Exception
end try
4.3.94 CDFsetzVarAllocBlockRecords

integer CDFsetzVarAllocBlockRecords(¢ out -- Completion status code.

142

id as long, ¢ in -- CDF identifier.

varNum as integer,
firstRec as integer,
lastRec as integer)

3

in -- Variable number.
in -- First record number.
in -- Last record number.

3

3

CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in
a CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s
Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.94.1. Example(s)
The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
dim status as integer

firstRec = 10
lastRec =19

try

status = CDFsetzVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?”), firstRec, lastRec)

catch ex as Exception

end try

4.3.95 CDFsetzVarAllocRecords

integer CDFsetzVarAllocRecords(¢ out -- Completion status code.
id as long, “in-- CDF identifier.

varNum as integer,
numRecs as integer)

in -- Variable number.
in -- Number of records.

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

143

numRecs Number of records to allocate.

4.3.95.1. Example(s)
The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of records.
Dim status as integer.

numRecs = 100
try

status = CDFsetzVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

ca'l.t.ch ex as Exception
end try
4.3.96 CDFsetzVarBlockingFactor

integer CDFsetzVarBlockingFactor(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetzVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.96.1. Example(s)
The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

bf= 100
try

status = CDFsetzVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR”), bf)

144

catch ex as Exception
end try

4.3.97 CDFsetzVarCacheSize

integer CDFsetzVarCacheSize(‘ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) in -- Number of cache buffers.

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numBuffers Number of cache buffers.

4.3.97.1. Example(s)
The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try

status = CDFsetzVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)

catch ex as Exception
end try

4.3.98 CDFsetzVarCompression

integer CDFsetzVarCompression(out -- Completion status code.

id as long, “ in-- CDF identifier.
varNum as integer, ¢ in -- Variable number.
compType as integer, ¢ in -- Compression type.

cParms as integer()) in -- Compression parameters.

CDFsetzVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.

145

The arguments to CDFsetzVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
compType The compression type.
cParms The compression parameters.

4.3.98.1. Example(s)
The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim compType as integer ¢ The compression type.
Dim cParms(1) as integer ¢ The compression parameters.

compType = GZIP_COMPRESSION
cParms(0) = 6
try

status = CDFsetzVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), compType, cParms)

ca'l.t.ch ex as Exception
end try
4.3.99 CDFsetzVarDataSpec

integer CDFsetzVarDataSpec(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) in -- Data type.

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are
equivalent. Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType The new data type.

146

4.3.99.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF UINT2) for zVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status. as integer

dataType = CDF_INT2
try

status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR”), dataType)

catch ex as Exception
end try
4.3.100 CDFsetzVarDimVariances

integer CDFsetzVarDimVariances(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

The arguments to CDFsetzVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

varNum zVariable number.

dimVarys Dimension variances.

4.3.100.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for zVariable “MY_VAR”, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.

Dim dimVarys()as integer = {VARY, VARY} ¢ The dimension variances.
Dim status as integer

try

varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFsetzVarDimVariances (id, varNum, dimVarys)

147

ca-l.t.ch ex as Exception
end try
4.3.101 CDFsetzVarlnitialRecs

integer CDFsetzVarInitialRecs(out -- Completion status code.
id as long, * in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetzVarlnitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarInitialRecs are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Initially written records.

4.3.101.1. Example(s)
The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.
Dim numRecsas integer ¢ The number of records.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

numRecs = 100
status = CDFsetzVarlnitialRecs (id, varNum, numRecs)

catch ex as Exception
end try

4.3.102 CDFsetzVarRecVariance

integer CDFsetzVarRecVariance(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

148

CDFsetzVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFsetzVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recVary Record variance.

4.3.102.1. Example(s)
The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim recVary as integer ¢ The record variance.
Dim status as integer

recVary = VARY
try

status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary)

catch ex as Exception
end try
4.3.103 CDFsetzVarReservePercent

integer CDFsetzVarReservePercent(out -- Completion status code.
id as long, “ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) in -- Reserve percentage.

CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

percent The reserve percentage.

149

4.3.103.1. Example(s)
The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The reserve percentage.
Dim status as integer

percent = 10
try

status = CDFsetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?), percent)

catch ex as Exception

end try

4.3.104 CDFsetzVarsCacheSize

integer CDFsetzVarsCacheSize(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ¢ in -- Number of cache buffers.

13

CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.
The arguments to CDFsetzVarsCacheSize are defined :

id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

numBuffers Number of buffers.

4.3.104.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
.dim status as integer

numBuffers = 10
try
status = CDFsetzVarsCacheSize (id, numBuffers)

catch ex as Exception

150

end try

4.3.105 CDFsetzVarSeqPos

integer CDFsetzVarSeqPos(¢ out -- Completion status code.

id as long,

varNum as integer,
dim recNum as integer,
indices as integer as integer())

¢ in -- CDF identifier.

in -- Variable number.
in -- Record number.

in -- Indices in a record.

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in
a CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFgetzVarSeqPos
method to get the current sequential value.

The arguments to CDFsetzVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum zVariable number.
recNum zVariable record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index.
For 0-dimensional zVariable, this argument is ignored, but must be presented.
4.3.105.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

dim id as long
dim varNum as integer

¢ CDF identifier.
¢ The variable number.

Dim recNum as integer ¢ The record number.

Dim indices(2) as integer

3

The indices.

recNum = 2
indices(0) =0
indices(1) =0
try
status = CDFsetzVarSeqPos (id, varNum, recNum, indices)

catch ex as Exception

end try

4.3.106 CDFsetzVarSparseRecords

integer CDFsetzVarSparseRecords(

id as long,

varNum as integer,
sRecordsType as integer)

out -- Completion status code.
‘ in -- CDF identifier.

in -- The variable number.

in -- The sparse records type.

151

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section
2.12.1 for the description of sparse records.

The arguments to CDFsetzVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

sRecordsType The sparse records type.

4.3.106.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

sRecordsType = PAD _SPARSERECORDS

try
status = CDFsetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType)

catch ex as Exception
end try

4.3.107 CDFvarClose’

integer CDFvarClose(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ¢ in -- rVariable number.

3

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum Variable number for the open rVariable’s file. This identifier must have been initialized by a call to
CDFgetVarNum.

% A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcloserVar is the preferred
function for it.

152

4.3.107.1. Example(s)

The following example will close an open rVariable in a multi-file CDF.

dim id as long
dim status as integer

try

¢ CDF identifier.
¢ Returned status code.

status = CDFvarClose (id, CDFvarNum (id, “Flux”))

catch ex as Exception

end try

4.3.108 CDFvarCreate!’

integer CDFvarCreate(

id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,
dimVariances as integer(),
varNum as integer)

out -- Completion status code.
¢ in -- CDF identifier.

in -- rVariable name.

¢ in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id

varName

dataType

numElements

recVariance

dimVariances

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

Name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

Data type of the new rVariable. Specify one of the data types defined in Section 2.6.

Number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

rVariable's record variance. Specify one of the variances defined in Section 2.10.

rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

10 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcreaterVar is the preferred

function for it.

153

varNum Number assigned to the new rVariable. This number must be used in subsequent CDF
function calls when referring to this rVariable. An existing rVariable's number may be
determined with the CDFvarNum or CDFgetVarNum function.

4.3.108.1. Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long

dim stats as integer

dim EPOCHrecVary as integer = VARY
Dim LATrecVary as integer = NOVARY
Dim LONrecVary as integer = NOVARY
Dim TMPrecVary as integer = VARY

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY}

Dim LATdimVarys() as integer = {VARY,VARY}
Dim LONdimVarys() as integer = {VARY,VARY}
Dim TMPdimVarys() as integer = {VARY,VARY}
Dim EPOCHvarNum as integer

Dim LATvarNum as integer

Dim LONvarNum as integer

Dim TMPvarNum as integer

try

status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1, _

CDF identifier.

Returned status code.
EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH zVariable number.
LAT zVariable number.
LON zVariable number.
TMP zVariable number.

EPOCHrecVary, EPOCHdimVarys, EPOCHvarNum)

status = CDFvarCreate (id, "LATITUDE", CDF INT2, 1,
LATrecVary, LATdimVarys, LATvarNum)

status = CDFvarCreate (id, "INTITUDE", CDF INT2, 1, _
LONrecVary, LONdimVarys, LONvarNum)

status = CDFvarCreate (id, "TEMPERATURE", CDF _REAL4, 1,
TMPrecVary, TMPdimVarys, TMPvarNum)

;:atch ex as Exception
end try
4.3.109 CDFvarGet!!

integer CDFvarGet(

id as long,

varNum as integer,
dim recNum as integer,
indices as integer(),
value as TYPE)

CDFvarGet is used to read a single value from an rVariable.

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

in -- Record number.

in -- Dimension indices.

out -- Value.

TYPE -- VB value/string type or object

I A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFgetrVarData is the preferred

function for it.

154

The arguments to CDFvarGet are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum rVariable number from which to read data.

recNum Record number at which to read.

indices Dimension indices within the record.

value Data value read. This buffer must be large enough to hold the value.

4.3.109.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY _ VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF. The first get operation passes
the value pointer, while the second operation uses “out” argument modifier.

dim id as long ¢ CDF identifier.

dim recNum as integer ¢ The record number.
dim varNum as integer ¢ The variable number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

13

3

try
varNum = CDFvarNum (id, “MY_VAR?”)
recNum = 0
indices(0) =0
indices(1) =0
status = CDFvarGet (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
object value2o
status = CDFvarGet (id, varNum, recNum, indices, value20)
value2 = value2o
catch ex as Exception

end try
4.3.110 CDFvarHyperGet'

integer CDFvarHyperGet(out -- Completion status code.

id as long, * in-- CDF identifier.

varNum as integer, in -- rVariable number.

recStart as integer, in -- Starting record number.

recCount as integer, ¢ in -- Number of records.

recInterval as integer, in -- Subsampling interval between records.

indices as integer(), in -- Dimension indices of starting value.

12 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperGetrVarData is the
preferred function for it.

155

3

counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Subsampling intervals along each dimension.
values as TYPE) ¢ out -- Values.

¢ TYPE -- VB value/string type or object

3

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities. Note: you need to provide dummy arrays, with at
least one (1) element, for indices, counts and intervals for scalar variables.

4.3.110.1. Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes (180,91,10) and CDF’s variable majority is ROW_MAIJOR. For the rVariable the record variance is VARY,
the dimension variances are {VARY,VARY,VARY}, and the data type is CDF REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to
CDFvarGet.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim tmp(,,) as single Temperature values.
Dim varN as integer rVariable number.
Dim recStart as integer = 13 Record number.

Dim recCount as integer = 1 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0,0,0} Dimension indices.
Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} Dimension intervals.

tryvarN = CDFgetVarNum (id, "Temperature")
status = CDFvarHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp)
;:atch ex as Exception
end try
Note that if the CDF's variable majority had been COLUMN_ MAJOR, the tmp array would have been declared simple
type of tmp(10,91,180) for proper indexing.

4.3.111 CDFvarHyperPut"

integer CDFvarHyperPut(out -- Completion status code.

id as long, “ in-- CDF identifier.
varNum as integer, ¢ in -- rVariable number.
recStart as integer, ‘¢ in -- Starting record number.

in -- Number of records.
in -- Interval between records.

recCount as integer,
recInterval as integer,

13 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperPutrVarData is the
preferred function for it.

156

in -- Dimension indices of starting value.

counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Interval between values along each dimension.
buffer as TYPE) ¢ in -- Buffer of values.

* TYPE -- VB value/string type (likely an array)

indices as integer(),

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities. Note: you need to
provide dummy arrays, with at least one (1) element, for indices, counts and intervals for scalar variables.

4.3.111.1. Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes (360,181). For LATITUDE the record variance is NOVARY, the dimension variances are
{NOVARY,VARY}, and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDFvarHyperPut rather than numerous calls to CDFvarPut.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim i as integer Latitude value.

Dim lats(181) as short ¢ Buffer of latitude values.
Dim varN as integer rVariable number.
Dim recStart as integer = 0 Record number.

Dim recCount as integer = 1 Record counts.

Dim recInterval as integer = 1 Record interval.

Dim indices()as integer = {0,0} Dimension indices.
Dim counts() as integer = {1,181} Dimension counts.
Dim intervals() as integer = {1,1} Dimension intervals.

try
varN = CDFvarNum (id, "LATITUDE")
fori= -90 to 90
lats(90+i) = CType(i, short)
next lat
status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception
end try

4.3.112 CDFvarInquire

integer CDFvarInquire(out -- Completion status code.

id as long, “ in-- CDF identifier.

varNum as integer, in -- rVariable number.

varName as string, out -- rVariable name.

dataType as integer , out -- Data type.

numElements as integer, out -- Number of elements (of the data type).
recVariance as integer, out -- Record variance.

dimVariances as integer()) out -- Dimension variances.

157

CDFvarlnquire is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that

data type).

The arguments to CDFvarInquire are defined as follows:

id

varNum

varName
dataType

numElements

recVariance

dimVariances

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 4.3.113).

rVariable's name.

Data type of the rVariable. The data types are defined in Section 2.6.

Number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 2.10.

Dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are defined in Section 2.10. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

4.3.112.1. Example(s)

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name
returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

dim id as long

Dim status as integer
Dim varName as string
Dim dataType as integer

Dim numElems as integer

Dim recVary as integer

¢ CDF identifier.

Returned status code.

rVariable name.

Data type of the rVariable.

Number of elements (of data type).
Record variance.

Dim dimVarys(CDF_MAX DIMS) as integer ¢ Dimension variances (allocate to allow the

try

maximum number of dimensions).

status = CDFvarlnquire (id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,

catch ex as Exception

end try

numElems, recVary, dimVarys)

158

4.3.113 CDFvarNum'

integer CDFvarNum(

id as long,

varName as string)

3

out -- Variable number.
¢ in -- CDF identifier.
¢ in -- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0). The
returned variable number should be used in the functions of the same variable type, rVariable or zVariable. If it is an
rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for

zVariables.

The arguments to CDFvarNum are defined as follows:

id

varName

4.3.113.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Name of the variable to search. This may be at most CDF_VAR NAME LEN256
characters. Variable names are case-sensitive.

Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

dim id as long

¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim varName as string ¢ Variable name.

dim dataType as integer ¢ Data type of the rVariable.

dim numElements integer ‘ Number of elements (of the data type).
dim recVariance as integer ¢ Record variance.

dim dimVariances(CDF_MAX DIMS) as integer ‘ Dimension variances.

try

status = CDFvarlnquire (id, CDFvarNum (id,"LATITUDE"), varName, dataType, _

numElements, recVariance, dimVariances)

catch ex as Exception

end try

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarlnquire would
be used to determine them. CDFvarlnquire is described in Section 4.3.112.

14 A legacy CDF function. It used to handle only rVariables. It has been extended to include zVariables. While it is still
available in V3.1, CDFgetVarNum is the preferred function for it.

159

4.3.114 CDFvarPut®

integer CDFvarPut(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
varNum as integer, in -- rVariable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ in -- Value.

* TYPE -- VB value/string type

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

recNum Record number at which to write.

indices Dimension indices within the specified record at which to write. Each element of indices

specifies the corresponding dimension index. For 0-dimensional variables, this argument is
ignored (but must be present).
value Data value to write.

4.3.114.1. Example(s)

The following example will write two data values (1% and 5™ elements) of a 2-dimensional rVariable (2 by 3) named
MY _ VAR to record number 0.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ rVariable number.

dim recNum as integer ¢ The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

13

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum =0
indices(0) =0
indices(1) =0
valuel =10.1
status = CDFvarPut (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
value2 =20.2
status = CDFvarPut (id, varNum, recNum, indices, value2)

15 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFputrVarData is the preferred
function for it.

160

catch ex as Exception
end try
4.3.115 CDFvarRename'®

integer CDFvarRename(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.
The arguments to CDFvarRename are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum rVariable number to rename. This number may be determined with a call to CDFvarNum.

varName The new rVariable name. The maximum length of the new name is
CDF VAR NAME LEN256 characters. Variable names are case-sensitive.

4.3.115.1. Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error
code.

dim id as long ¢ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ¢ rVariable number.

try

varNum = CDFvarNum (id, "TEMPERATURE")

}

catch ex as Exception
end try

4.4 Attributes/Entries

This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

16 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFrenamerVar is the preferred
function for it.

161

4.4.1 CDFattrCreate!’

integer CDFattrCreate(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrName as string, in -- Attribute name.

attrScope as integer, in -- Scope of attribute.
attrNum as integer) out -- Attribute number.

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrName Name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope Scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum Number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.1.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFattrCreate (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFattrCreate (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

17 Same as CDFcreateAttr.

162

44.2 CDFattrEntrylnquire

integer CDFattrEntryInquire(out -- Completion status code.

id as long, “ in-- CDF identifier.

attrNum as integer, ¢ in -- Attribute number.

entryNum as integer, in -- Entry number.

dataType as integer, out -- Data type.

numElements as integer) out -- Number of elements (of the data type).

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrinquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum Attribute number for which to inquire an entry. This number may be determined with a
call to CDFattrNum (see Section 4.4.5).

entryNum Entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by

the rEntry).
dataType Data type of the specified entry. The data types are defined in Section 2.6.
NumElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

4.4.2.1. Example(s)

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim attrN as integer ¢ attribute number.
Dim entryN as integer ¢ Entry number.

Dim attrName as string ¢ attribute name.

13

Dim attrScope as integer attribute scope.
Dim maxEntry as integer Maximum entry number used.
Dim dataType as integer Data type.

Dim numElems as integer ‘ Number of elements (of the data type).

13

3

try
attrN = CDFgetAttrNum (id, "TMP")
status = CDFattrlnquire (id, attrN, attrName, attrScope, maxEntry)

163

for entryN = 0 to maxEntry
status = CDFattrEntryInquire (id, attrN, entryN, dataType, numElems)

next entryN

}

catch ex as Exception

end try

4.4.3 CDFattrGet'®

integer CDFattrGet(
id as long,

integer attrNum,
integer entryNum,
value as TYPE)

out -- Completion status code.

‘ in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Attribute entry value.

TYPE -- VB value/string type or object

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that

data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id

attrNum

entryNum

value

4.4.3.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Attribute number. This number may be determined with a call to CDFattrNum (Section
4.4.5).

Entry number. If the attribute is global in scope, this is simply the gEntry number and has
meaning only to the application. If the attribute is variable in scope, this is the number of
the associated rVariable (the rVariable being described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The method
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as long

dim status as integer
Dim attrN as integer
Dim entryN as integer

¢ CDF identifier.

¢ Returned status code.
Attribute number.
Entry number.

3

13

18 A legacy CDF function.

function for it.

While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is the preferred

164

Dim dataType as integer ¢ Data type.
Dim numElems as integer ¢ Number of elements (of data type).

try
attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES LVL") ¢ The rEntry number is the rVariable number.

status = CDFattrEntryInquire (id, attrN, entryN, dataType, numElems)

if dataType = CDF_CHAR then
dim buffer as string
status = CDFattrGet (id, attrN, entryN, buffer)
end if
catch ex as Exception

end try

4.4.4 CDFattrInquire

integer CDFattrInquire(out -- Completion status code.

id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

attrName as string, out -- Attribute name.

attrScope as integer, out -- Attribute scope.

maxEntry as integer) out -- Maximum gEntry/rEntry number.

CDFattrInquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntryInquire.

The arguments to CDFattrInquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName Attribute's name. This string length is limited to CDF_ ATTR_ NAME LEN256.
attrScope Scope of the attribute. Attribute scopes are defined in Section 2.13.
maxEntry For gAttributes this is the maximum gEntry number used. For vAttributes this is the

maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). If no entries exist for the attribute, then a
value of -1 will be passed back.

4.4.4.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the method CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

19 A legacy function. While it is still available in V3.1, CDFinquireAttr is the preferred function for it.

165

dim id as long
Dim status as integer

Dim numDims as integer
Dim dimSizes() as integer

¢ CDF identifier.

Returned status code.

Number of dimensions.

Dimension sizes (allocate to allow the
maximum number of dimensions).

Dim encoding as integer Data encoding.

Dim majority as integer

Dim maxRec as integer

Variable majority.
Maximum record number in CDF.

Dim numVars as integer ¢ Number of variables in CDF.
Dim numAttrs as integer ¢ Number of attributes in CDF.

Dim attrN as integer
Dim attrName as string

Dim attrScope as integer
Dim maxEntry as integer

try

status = CDFinquire

attribute number.
attribute name.

attribute scope.
Maximum entry number.

(id, numDims, dimSizes, encoding, majority, maxRec, numVars,
numACttrs)

for attrN = 0 to (numAttrs-1)
status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

next attrN
catch ex as Exception

end try

4.4.5 CDFattrN

integer CDFattrNum(
id as long,
attrName as string)

um20

3

out -- attribute number.
¢ in-- CDF id
¢ in -- Attribute name

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id

attrName

CDFattrNum may be used

4.4.5.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Name of the attribute for which to search. This may be at most
CDF_ATTR NAME LEN256 characters. Attribute names are case-sensitive.

as an embedded function call when an attribute number is needed.

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as

an embedded function call

. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would

20 A legacy CDF function.

While it is still available in V3.1, CDFgetAttrNum is the preferred function for it.

166

have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

dim id as long
Dim status as integer

try

¢ CDF identifier.
¢ Returned status code.

status = CDFattrRename (id, CDFattrNum (id,"pressure"), "PRESSURE")

catch ex as Exception

end try

4.4.6

CDFattrPut

integer CDFattrPut(

id as long,

integer attrNum,
integer entryNum,
integer dataType,
integer numElements,
value as TYPE)

out -- Completion status code.

‘ in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).
in -- Attribute entry value.

* TYPE -- VB value/string type

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

4.4.6.1.

Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

Attribute number. This number may be determined with a call to CDFgetAttrNum.

Entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

Data type of the specified entry. Specify one of the data types defined in Section 2.6.
Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).

For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

167

CDF identifier.
Returned status code.
Entry string length.
Entry number.

dim id as long
Dim status as integer
Dim TITLE _LEN as integer = 10
Dim entryNum as integer
Dim numElements as integer Number of elements (of data type).
Dim title as string = "CDF title." Value of TITLE attribute, entry number 0.
Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,
rEntry for rVariable TMP.

-

entryNum = 0

try
status = CDFattrPut (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF_CHAR, TITLE LEN, title)

numElements = 2
status = CDFattrPut (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
CDF_INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.7 CDFattrRename?!

integer CDFattrRename(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Number of the attribute to rename. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName The new attribute name. This may be at most CDF ATTR NAME LEN256 characters.
Attribute names are case-sensitive.

4.4.7.1. Example(s)
In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.

21 A legacy CDF function. While it is still available in V3.1, CDFrenameAttr is the preferred function for it.

168

Dim status as integer ¢ Returned status code.
try
status = CDFattrRename (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")
catch ex as Exception
end try

4.4.8 CDFconfirmAttrExistence

integer CDFconfirmAttrExistence(out -- Completion status code.
id as long, “ in-- CDF identifier.
attrName as string) ¢ in -- Attribute name.

13

CDFconfirmAttrExistence confirms whether an attribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, the informational status code, NO SUCH_ATTR, is returned and no exception is thrown.

The arguments to CDFconfirmAttrExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Attribute name to check.

4.4.8.1. Example(s)
The following example checks whether an attribute by the name of “ATTR_NAME!1” is in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmAttrExistence (id, “ATTR_NAME1"”)
if status = NO_SUCH_ATTR then

end if
catch ex as Exception
end try

449 CDFconfirmgEntryExistence

integer CDFconfirmgEntryExistence(out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- gEntry number.

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.

If the gEntry does not exist, the informational status code NO_SUCH_ENTRY will be returned and no exception is
thrown.

169

The arguments to CDFconfirmgEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum Global entry number.

4.4.9.1. Example(s)
The following example checks the existence of a gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
dim attrNum as integer Attribute number.
Dim entryNum as integer gEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 1

status = CDFconfirmgEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

4.4.10 CDFconfirmrEntryExistence

integer CDFconfirmrEntryExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer) in -- rEntry number.

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rEntry number.

4.4.10.1. Example(s)

The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR?”, for attribute
“MY_ATTR” in a CDF.

170

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.
dim attrNum as integer Attribute number.
dim entryNum as integer rEntry number.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFconfirmrEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception
end try
4.4.11 CDFconfirmzEntryExistence

integer CDFconfirmzEntryExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer) in -- zEntry number.

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum zVariable number.

4.4.11.1. Example(s)

The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable
attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
dim varNum as integer Attribute number.
dim entryNum as integer zEntry number.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFconfirmzEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

171

catch ex as Exception

end try

4.4.12 CDFcreateAttr

integer CDFcreateAttr(
id as long,

attrName as string,
attrScope as integer,
attrNum as integer)

out -- Completion status code.
‘ in -- CDF identifier.

in -- Attribute name.

in -- Scope of attribute.

out -- Attribute number.

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the method CDFattrCreate. An
attribute with the same name must not already exist in the CDF.

The arguments to CDFcreateAttr are defined as follows:

id

attrName

attrScope

attrNum

4.4.12.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Name of the attribute to create. This may be at most CDF_ATTR NAME LEN256
characters. Attribute names are case-sensitive.

Scope of the new attribute. Specify one of the scopes described in Section 2.13.
Number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as longid
Dim status as integer

CDF identifier.
Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFcreateAttr (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFcreateAttr (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

172

4.4.13 CDFdeleteAttr

integer CDFdelete Attr(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrNum as integer) ¢ in -- Attribute identifier.

CDFdeleteAttr deletes the specified attribute from a CDF.
The arguments to CDFdeleteAttr are defined as follows:
id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to be deleted.

4.4.13.1. Example(s)
The following example deletes an existing attribute named MY_ATTR from a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFdeleteAttr (id, attrNum)

catch ex as Exception

end try

4.4.14 CDFdeleteAttrgEntry

integer CDFdeleteAttrgEntry(¢ out -- Completion status code.
id as long, “in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer) in -- gEntry identifier.
CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.
The arguments to CDFdeleteAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number from which to delete an attribute entry.

entryNum gEntry number to delete.

4.4.14.1. Example(s)
The following example deletes the entry number 5 from an existing global attribute MY ATTR in a CDF.

173

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim varNum as integer Attribute number.
dim entryNum as integer gEntry number.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = 5
status = CDFdeleteAttrgEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.15 CDFdeleteAttrrEntry

integer CDFdeleteAttrrEntry(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, ¢ in -- Attribute identifier.
entryNum as integer) in -- rEntry identifier.

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from
a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rVariable number.

4.4.15.1. Example(s)

The following example deletes the entry corresponding to rVariable “MY_VARI1” from the variable attribute
“MY_ATTR” in a CDF.

dim id as long * CDF identifier.

Dim status as integer ‘ Returned status code.
dim varNum as integer Attribute number.
dim entryNum as integer rEntry number.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFdeleteAttrrEntry (id, attrNum, entryNum)

174

catch ex as Exception

end try

4.4.16 CDFdeleteAttrzEntry

integer CDFdeleteAttrzEntry(¢ out -- Completion status code.
id as long, * in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer) in -- zEntry identifier.

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

The arguments to CDFdeleteAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum zEntry number to be deleted that is the zVariable number.

4.4.16.1. Example(s)

The following example deletes the variable attribute entry named MY ATTR that is attached to the zVariable
MY _VARI.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ zEntry number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFdeleteAttrzEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.17 CDFgetAttrgEntry

integer CDFgetAttrgEntry (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘ in -- gEntry number.

value as TYPE) out -- gEntry data.

TYPE -- VB value/string type or object

175

This method is identical to the method CDFattrGet. CDFgetAttrgEntry is used to read a global attribute entry from a
CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling CDFgetAttrgEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.
entryNum Global attribute entry number.
value The value read.

4.4.17.1. Example(s)
The following example displays the value of the global attribute called HISTORY.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).
Dim buffer as Object ¢ Buffer to receive value.

try
attrN = CDFattrNum (id, "HISTORY")
entryN = 0
status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)
status = CDFgetAttrgEntry (id, attrN, entryN, buffer)

if dataType = CDF_CHAR then
* buffer is a string

end if
catch ex as Exception

end try

4.4.18 CDFgetAttrgEntryDataType

integer CDFgetAttrgEntryDataType (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

in -- gEntry number.
out -- gEntry data type.

entryNum as integer,
dataType as integer)

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The
data types are described in Section 2.6.

176

The arguments to CDFgetAttrgEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.
entryNum gEntry number.

dataType Data type of the gEntry.

4.4.18.1. Example(s)
The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim attrNum as integer ¢ Attribute number.
dim entryNum as integer gEntry number.

dim dataType as integer gEntry data type.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 2
status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)
catch ex as Exception
end try
4.4.19 CDFgetAttrgEntryNumElements

integer CDFgetAttrgEntryNumElements (out -- Completion status code.

id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute identifier.
entryNum as integer, in -- gEntry number.

numElems as integer) out -- gEntry’s number of elements.

CDFgetAttrgEntryNumElements returns the number of elements of the specified global attribute and gentry number in
a CDF.

The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the global attribute.
entryNum gEntry number.

numElems Number of elements of the gEntry.

177

4.4.19.1. Example(s)

The following example gets the number of elements from the gEntry numbered 2 from the global attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

dim attrNum as integer Attribute number.

dim entryNum as integer gEntry number.

dim numElements as integer gEntry’s number of elements.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 2
status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

4.4.20 CDFgetAttrMaxgEntry

integer CDFgetAttrMaxgEntry (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute identifier.
maxEntry as integer) out -- The last gEntry number.
CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.

The arguments to CDFgetAttrMaxgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the global attribute.

maxEntry Last gEntry number.

4.4.20.1. Example(s)
The following example gets the last entry number from the global attribute “MY_ ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim attrNum as integer ¢ Attribute number.

dim maxEntry as integer ¢ The last gEntry number.
try

178

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxgEntry (id, attrNum, maxEntry)

catch ex as Exception

end try

4.4.21 CDFgetAttrMaxrEntry

integer CDFgetAttrMaxrEntry (¢ out -- Completion status code.

id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute identifier.

maxEntry as integer) out -- The maximum rEntry number.

CDFgetAttrMaxrEntry returns the last rEntry number (rVariable number) to which the given variable attribute is
attached.

The arguments to CDFgetAttrMaxrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

maxEntry Last rEntry number (rVariable number) to which attrNum is attached..

4.4.21.1. Example(s)

The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ‘ Returned status code.
dim attrNum as integer ¢ Attribute number.

dim maxEntry as integer The last rEntry number.

3

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)

status = CDFgetAttrMaxrEntry (id, attrNum, maxEntry)
catch ex as Exception

end try

4.4.22 CDFgetAttrMaxzEntry

integer CDFgetAttrMaxzEntry (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

maxEntry as integer) out -- The maximum zEntry number.

179

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.

The arguments to CDFgetAttrMaxzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

maxEntry Last zEntry number (zVariable number) to which attrNum is attached..

4.4.22.1. Example(s)

The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY _ATTR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.

dim maxEntry as integer The last zEntry number

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxzEntry (id, attrNum, maxEntry)

catch ex as Exception
end try

4.4.23 CDFgetAttrName

integer CDFgetAttrName (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrNum as integer, ¢ in-- Attribute identifier.

attrName as string) out -- The attribute name.
CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.
The arguments to CDFgetAttrName are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the attribute.

attrName Name of the attribute.

4.4.23.1. Example(s)

The following example retrieves the name of the attribute number 2, if it exists, in a CDF.

180

dim id as long

Dim status as integer
dim attrNum as integer
Dim attrName as string

attrNum = 2
try

¢ CDF identifier.

¢ Returned status code.
Attribute number.
The attribute name.

3

3

status = CDFgetAttrName (id, attrNum, attrName)

catch ex as Exception

end try

4.4.24 CDFgetAttrNum

integer CDFgetAttrNum (
id as long,
attrName as string)

3

out -- Attribute number.
¢ in -- CDF identifier.
¢ in -- The attribute name.

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFgetAttrNum are defined as follows:

id

attrName

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Name of the attribute for which to search. This may be at most
CDF_ATTR NAME LEN256 characters. Attribute names are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

4.4.24.1. Example(s)

In the following example

the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being

used as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to
CDFgetAttrNum would have returned an error code. Passing that error code to CDFattrRename as an attribute number
would have resulted in CDFattrRename also returning an error code.

dim id as long
Dim status as integer

try

¢ CDF identifier.
¢ Returned status code.

status = CDFrenameAttr (id, CDFgetAttrNum (id,"pressure"), "PRESSURE")

catch ex as Exception

181

end try

4.4.25 CDFgetAttrrEntry

integer CDFgetAttrrEntry (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘ in -- Entry number.

value as TYPE) ‘ out -- Entry data.

TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrrEntry is used to read an rVariable attribute entry from
a CDF. In most cases it will be necessary to call CDFinquireAttrrEntry before calling CDFgetAttrrEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum rVariable attribute entry number that is the rVariable number from which the attribute is
read.

value Entry value read.

4.4.25.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as longid ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim attrN as integer ¢ Attribute number.
Dim entryN as integer ¢ Entry number.

Dim dataType as integer ¢ Data type.

13

Dim numElems as integer Number of elements (of data type).

try
attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES LVL") ° The rEntry number is the rVariable number.
status = CDFinquireAttrrEntry (id, attrN, entryN, out dataType, out numElems)
if dataType = CDF_CHAR then

Dim buffer as string
status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if .
catch ex as Exception

end try

182

4.4.26 CDFgetAttrrEntryDataType

integer CDFgetAttrrEntryDataType (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

in -- rEntry number.
out -- rEntry data type.

entryNum as integer,
dataType as integer)

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 2.6.

The arguments to CDFgetAttrrEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.
entryNum rEntry number.

dataType Data type of the rEntry.

4.4.26.1. Example(s)

The following example gets the data type for the entry of rVariable “MY VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.

3

dim entryNum as integer rEntry number.

dim dataType as integer ¢ rEntry data type.
try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)
catch ex as Exception
end try
4.4.27 CDFgetAttrrEntryNumElements
integer CDFgetAttrrEntryNumElements (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

in -- rEntry number.
out -- rEntry’s number of elements.

startRec as integer,
numElems as integer)

CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.

183

The arguments to CDFgetAttrrEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.
entryNum rEntry number.

numElems Number of elements of the rEntry.

4.4.27.1. Example(s)

The following example gets the number of elements for the entry of rVariable “MY_ VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

dim attrNum as integer Attribute number.

dim entryNum as integer rEntry number.

dim numElements as integer ¢ rEntry’s number of elements.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

4.4.28 CDFgetAttrScope

integer CDFgetAttrScope (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
attrScope as integer) out -- Attribute scope.

CDFgetAttrScope returns the attribute scope (GLOBAL SCOPE or VARIABLE SCOPE) of the specified attribute in
a CDF. Refer to Section 2.13 for the description of the attribute scopes.

The arguments to CDFgetAttrScope are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

attrScope Scope of the attribute.

184

4.4.28.1. Example(s)
The following example gets the scope of the attribute “MY_ ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.
dim attrScope as integer Attribute scope.

13

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrScope (id, attrNum, attrScope)

catch ex as Exception

end try

4.4.29 CDFgetAttrzEntry

integer CDFgetAttrzEntry(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrNum as integer, in -- Variable attribute number.
entryNum as integer, in -- Entry number.
value as TYPE) ¢ out -- Entry value.
¢ TYPE -- VB value/string type or object

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this method in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Variable attribute entry number that is the zVariable number from which the attribute entry
is read

value Entry value read.

4.4.29.1. Example(s)

The following example displays the value of the UNITS attribute for the PRES LVL zVariable (but only if the data
type is CDF_CHAR).

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

185

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer ¢ Data type.

Dim numElems as integer Number of elements (of data type).

try
attrN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "PRES LVL") The zEntry number is the zVariable number.
status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then
dim buffer as string

status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
end if

catch ex as Exception

end try

4.4.30 CDFgetAttrzEntryDataType

integer CDFgetAttrzEntryDataType (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

in -- zEntry number.
out -- zEntry data type.

entryNum as integer,
dataType as integer)

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data
types are described in Section 2.6.

The arguments to CDFgetAttrzEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.
entryNum zEntry number that is the zVariable number.

dataType Data type of the zEntry.

4.4.30.1. Example(s)
The following example gets the data type of the attribute named MY ATTR for the zVariable MY VARI in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.
dim entryNum as integer zEntry number.

dim dataType as integer zEntry data type.

13

3

try

186

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

4431 CDFgetAttrzEntryNumElements

integer CDFgetAttrzEntryNumElements (¢
id as long, ‘
attrNum as integer,

entryNum as integer ,
numElems as integer)

out -- Completion status code.

in -- CDF identifier.

in -- Attribute identifier.

in -- zEntry number.

out -- zEntry’s number of elements.

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a

CDF.

The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.
entryNum zEntry number that is the zVariable number.
numElems Number of elements of the zEntry.

4.4.31.1. Example(s)

The following example returns the number of elements for attribute named MY ATTR for the zVariable MY VARI in

a CDF

dim id as long ‘
Dim status as integer ¢
dim attrNum as integer

dim entryNum as integer
dim numElements as integer

3
3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)

CDF identifier.

Returned status code.
Attribute number.

zEntry number.

zEntry’s number of elements.

status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, out numElements)

catch ex as Exception

end try

187

4432 CDFgetNumAttrgEntries

integer CDFgetNumAttrgEntries (
id as long,

attrNum as integer,

entries as integer)

out -- Completion status code.
‘ in -- CDF identifier.

in -- Attribute number.

out -- Total gEntries.

CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a

CDF.

The arguments to CDFgetNumAttrgEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Number of gEntries for attrNum.

4.4.32.1. Example(s)

The following example retrieves the total number of gEntries for the global attribute MY ATTR in a CDF.

dim status as integer

dim id as long

Dim attrNum as integer
Dim numEntries as integer
Dim i as integer

try

attrNum = CDFgetAttrNum (id, “MUY_ATTR”)

status = CDFgetNumAttrgEntries (id, attrNum, numEntries)

for i=0 to (numEntries-1)
: process an entry
riext i
;:atch ex as Exception

end try

4.4.33 CDFgetNumAttributes

integer CDFgetNumAttributes (
id as long,
numAttrs as integer)

¢ Returned status code.
¢ CDF identifier.

¢ Attribute number.

¢ Number of entries.

3

out -- Completion status code.
¢ in -- CDF identifier.
¢ out -- Total number of attributes.

CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.

The arguments to CDFgetNumAttributes are defined as follows:

188

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs Total number of global and variable attributes.

4.4.33.1. Example(s)

The following example returns the total number of global and variable attributes in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

dim numAttrs as integer ¢ Number of attributes.
try

status = CDFgetNumA ttributes (id, out numA(ttrs)

catch ex as Exception

end try

4.4.34 CDFgetNumAttrrEntries

integer CDFgetNumAttrrEntries (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer , ¢ in -- Attribute number.

entries as integer) ‘ out -- Total rEntries.

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified
(variable) attribute of a CDF.

The arguments to CDFgetNumAttrrEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Total rEntries.

4.4.34.1. Example(s)
The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

dim status as integer ¢ Returned status code.

dim id as long

dim attrNum as integer ¢ Attribute number.
dim entries as integer ¢ Number of entries.

189

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetNumA ttrrEntries (id, attrNum, entries)

catch ex as Exception

end try

4.4.35 CDFgetNumAttrzEntries

integer CDFgetNumAttrzEntries (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, ¢ in -- Attribute number.
entries as integer) ‘ out -- Total zEntries.

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified
variable attribute in a CDF.

The arguments to CDFgetNumAttrzEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Total zEntries.

4.4.35.1. Example(s)
The following example returns the total number of zEntries for the variable attribute MY ATTR in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

dim attrNum as integer ¢ Attribute number.
dim entries as integer ¢ Number of entries.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetNumAttrzEntries (id, attrNum, entries)

catch ex as Exception

end try

4.4.36 CDFgetNumgAttributes

integer CDFgetNumgAttributes (¢ out -- Completion status code.

190

id as long, ¢ in-- CDF identifier.
numAttrs as integer) ‘ out -- Total number of global attributes.

CDFgetNumgAttributes returns the total number of global attributes in a CDF.
The arguments to CDFgetNumgAttributes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

numAttrs Number of global attributes.

4.4.36.1. Example(s)

The following example returns the total number of global attributes in a CDF.

dim status as integer ¢ Returned status code.

dim id as long ¢ CDF identifier.

dim numAttrs as integer ¢ Number of global attributes.
try

status = CDFgetNumgAdttributes (id, numAttrs)

catch ex as Exception
end try

4.4.37 CDFgetNumvAttributes

integer CDFgetNumvAttributes (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numAttrs as integer) ‘ out -- Total number of variable attributes.

CDFgetNumvAttributes returns the total number of variable attributes in a CDF.
The arguments to CDFgetNumvAttributes are defined as follows:
id Identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs Number of variable attributes.

4.4.37.1. Example(s)

The following example returns the total number of variable attributes of a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.
dim numAttrs as integer ¢ Number of variable attributes.

191

try

status = CDFgetNumvAttributes (id, numAttrs)

catch ex as Exception

end try

4.4.38 CDFinquireAttr

integer CDFinquire Attr(
id as long,

attrNum as integer,
attrName as string,
attrScope as integer,
maxgEntry as integer,
maxrEntry as integer,
maxzEntry as integer)

out -- Completion status code.

¢ in-- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry number.
out -- Maximum rEntry number.
out -- Maximum zEntry number.

CDFinquireAttr is used to inquire information about the specified attribute. This method expands the method
CDFattrInquire to provide an extra information about zEntry if the attribute has a variable scope.

The arguments to CDFinquireAttr are defined as follows:

id

attrNum

attrName

attrScope

maxgEntry

maxrEntry

maxzEntry

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

Attribute's name that corresponds to attrNum. This string length is limited to
CDF_ATTR NAME LEN256.

Scope of the attribute (GLOBAL_SCOPE or VARIABLE SCOPE). Attribute scopes are
defined in Section 2.13.

For vAttributes, this value of this field is -1 as it doesn’t apply to global attribute entry
(gEntry). For gAttributes, this is the maximum entry (gentry) number used. This number
may not correspond with the number of entries (if some entry numbers were not used). If
no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to rVariable attribute entry
(tEntry). For vAttributes, this is the maximum rVariable attribute entry (rEntry) number
used. This number may not correspond with the number of entries (if some entry numbers
were not used). If no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to zVariable attribute entry
(zEntry). For vAttributes, this is the maximum zVariable attribute entry (zEntry) number
used. This may not correspond with the number of entries (if some entry numbers were not
used). If no entries exist for the attribute, then the value of -1 is returned.

192

4.4.38.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined by calling the method CDFinquireCDF. Note that attribute numbers start at zero (0) and are consecutive.

CDF identifier.

Returned status code.

Number of dimensions.

Dimension sizes (allocate to allow the
maximum number of dimensions).
Data encoding.

dim id as long

Dim status as integer
Dim numDims as integer
Dim dimSizes() as integer

Dim encoding as integer
Dim majority as integer Variable majority.

Dim maxRec as integer Maximum record number in CDF.
Dim numVars as integer ¢ Number of variables in CDF.
Dim numAttrs as integer ¢ Number of attributes in CDF.
Dim attrN as integer ¢ attribute number.

Dim attrName as string attribute name.

Dim attrScope as integer attribute scope.

Dim maxgEntry as integer

Dim maxrEntry as integer

Dim maxzEntry as integer ¢ Maximum entry numbers.

3

3

try
status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)

for attrN = 0 to (numAttrs-1)
status = CDFinquireAttr (id, attrN, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)

next attrN
catch ex as Exception

end try

4.4.39 CDFinquireAttrgEntry

integer CDFinquireAttrgEntry (out -- Completion status code.

id as long, “ in-- CDF identifier.

attrNum as integer, in -- attribute number.

entryNum as integer, in -- Entry number.

dataType as integer, out -- Data type.

numElements as integer) out -- Number of elements (of the data type).

This method is identical to CDFattrEntrylnquire. CDFinquireAttrgEntry is used to inquire information about a global
attribute entry.

The arguments to CDFinquireAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

193

entryNum Entry number to inquire.
dataType Data type of the specified entry. The data types are defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF _CHAR and
CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

4.4.39.1. Example(s)

The following example returns each entry for a global attribute named TITLE. Note that entry numbers need not be
consecutive - not every entry number between zero (0) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim attrN as integer attribute number.

Dim entryN as integer Entry number.

Dim attrName as string attribute name.

Dim attrScope as integer attribute scope.

Dim maxEntry as integer Maximum entry number used.
Dim dataType as integer Data type.

Dim numElems as integer Number of elements

try
attrN = CDFgetAttrNum (id, "TITLE")
status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

for entryN = 0 to maxEntry
status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)

¢ process entries

next entryN
catch ex as Exception

end try
4.4.40 CDFinquireAttrrEntry

integer CDFinquireAttrrEntry (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in -- Entry number.

dataType as integer, out -- Data type.
numElements as integer) out -- Number of elements

This method is identical to the method CDFattrEntrylnquire. CDFinquireAttrrEntry is used to inquire about an
rVariable’s attribute entry.

The arguments to CDFinquireAttrrEntry are defined as follows:

194

id

attrNum

entryNum

dataType

numElements

4.4.40.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

Attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

Entry number to inquire. This is the rVariable number (the rVariable being described in
some way by the rEntry).

Data type of the specified entry. The data types are defined in Section 2.6.
Number of elements of the data type. For character data types (CDF _CHAR and

CDF _UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

The following example determines the data type of the “UNITS” attribute for the rVariable “Temperature”, then
retrieves and displays the value of the UNITS attribute.

dim id as long

Dim status as integer
Dim attrN as integer
Dim entryN as integer

Dim dataType as integer
Dim numElems as integer

try

¢ CDF identifier.

¢ Returned status code.
¢ Attribute number.

¢ Entry number.

¢ Data type.

¢ Number of elements.

attrN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "Temperature")
status = CDFinquireAttrrEntry (id, attrN, entryN, dataType, numElems)

if dataType = CDF_CHAR then
dim buffer as string

status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if
catch ex as Exception

end try

4.441 CDFinquireAttrzEntry

integer CDFinquireAttrzEntry (
id as long,

attrNum as integer,

entryNum as integer,

dataType as integer,
numElements as integer)

out -- Completion status code.

in -- CDF identifier.

in -- (Variable) Attribute number.

in -- zEntry number.

out -- Data type.

out -- Number of elements (of the data type).

CDFinquireAttrzEntry is used to inquire about a zVariable’s attribute entry.

The arguments to CDFinquireAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number for which to inquire an entry. This number may be determined
with a call to CDFgetAttrNum (see Section 4.4.24).

entryNum Entry number to inquire. This is the zVariable number (the zVariable being described in
some way by the zEntry).

dataType Data type of the specified entry. The data types are defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF _CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

4.4.41.1. Example(s)

The following example determines the data type of the UNITS attribute for the zVariable Temperature, then retrieves
and displays the value of the UNITS attribute.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim attrN as integer ¢ attribute number.
Dim entryN as integer ¢ Entry number.

Dim dataType as integer ¢ Data type.

Dim numElems as integer Number of elements .

try
attrN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "Temperature")

status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then
dim buffer as string
status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
end if
catch ex as Exception

end try

4.4.42 CDFputAttrgEntry

integer CDFputAttrgEntry(¢ out -- Completion status code.

id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

entryNum as integer, in -- Attribute entry number.

value as string) in -- Attribute entry value in string.

integer CDFputAttrgEntry(¢ out -- Completion status code.
id as long, * in-- CDF identifier.

196

in -- Attribute number.
in -- Attribute entry number.

attrNum as integer,
entryNum as integer,

dataType as integer, ¢ in -- Data type of this entry.
numElements as integer, ¢ in -- Number of elements in the entry (of the data type).
value as TYPE) ¢ in -- Attribute entry value.

¢ TYPE -- VB value/string type.
CDFputAttrgEntry is used to write global attribute entry. The entry may or may not already exist. If it does exist, it is
overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry.

The arguments to CDFputAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum Global attribute entry number.

dataType Data type of the specified entry. Specify one of the data types defined in Section 2.6.
numElements Number of elements of the data type. For character data types (CDF _CHAR and

CDF _UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. Entry value is written to the CDF from memory address value.

4.4.42.1. Example(s)
The following example writes a global attribute entry to the global attribute called TITLE.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim entryNum as integer Attribute entry number.
Dim title as string = "CDF title." ¢ Value of TITLE attribute.

3

entryNum = 0
try

status = CDFputAttrgEntry (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF CHAR, title.Length, title)
catch ex as Exception
end try

4.4.43 CDFputAttrrEntry

integer CDFputAttrrEntry(¢ out -- Completion status code.
id as long, * in-- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.

197

in — Attribute entry number.
in -- tribute entry value in string.

entryNum as integer,
value as string)

integer CDFputAttrrEntry(¢ out -- Completion status code.
id as long, “ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in — Attribute entry number.
dataType as integer, in -- Data type.
numElems as integer, in -- Number of elements.
value as TYPE) ¢ in -- tribute entry value.

¢ TYPE -- VB value/string type.

This method is identical to the method CDFattrPut. CDFputAttrrEntry is used to write rVariable’s attribute entry. The
entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of that
data type) may be changed when overwriting an existing entry.

The arguments to CDFputAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Attribute entry number that is the rVariable number to which this attribute entry
belongs.

dataType Data type of the specified entry. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. Entry value is written to the CDF from memory address value.

4.4.43.1. Example(s)

The following example writes to the variable scope attribute VALIDs for the entry, of two elements, that corresponds
to the rVariable TMP.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

Dim entryNum as integer ¢ Entry number.
Dim numElements as integer ¢ Number of elements (of data type).
Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,

¢ rEntry for rVariable TMP.

numElements = 2
try

status = CDFputAttrrEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
CDF _INT2, numFElements, TMPvalids)

198

catch ex as Exception

end try

4.4.44 CDFputAttrzEntry

integer CDFputAttrzEntry(

id as long,

attrNum as integer,
entryNum as integer,
value as string)

integer CDFputAttrzEntry(

id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer,
value as TYPE)

out -- Completion status code.
‘ in -- CDF identifier.

in -- Attribute number.

in -- Attribute entry number.

P

in -- Attribute entry value in string.

out -- Completion status code.

‘ in -- CDF identifier.

in -- Attribute number.

in -- Attribute entry number.

in -- Data type of this entry.

in -- Number of elements in the entry (of the data type)
¢ in -- Attribute entry value.

¢ TYPE -- VB value/string type.

CDFputAttrzEntry is used to write zVariable’s attribute entry. The entry may or may not already exist. If it does exist,
it is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an

existing entry.

The arguments to CDFputAttrzEntry are defined as follows:

id

attrNum

entryNum
dataType

numElements

value

4.4.44.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

Variable attribute number. This number may be determined with a call to
CDFgetAttrNum (see Section 4.4.24).

Entry number that is the zVariable number to which this attribute entry belongs.

Data type of the specified entry. Specify one of the data types defined in Section 2.6.
Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).

For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes a zVariable’s attribute entry. The entry has two elements (that is two values for non-
CDF_CHAR type). The zEntry in the variable scope attribute VALIDs corresponds to the zVariable TMP.

dim id as long
Dim status as integer

Dim numElements as integer

¢ CDF identifier.
¢ Returned status code.
Number of elements (of data type).

Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,

¢ zEntry for zVariable TMP.

199

numElements = 2
try

status = CDFputAttrzEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
CDF_INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.45 CDFrenameAttr

integer CDFrenameAttr(out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

This method is identical to method CDFattrRename. CDFrenameAttr renames an existing attribute.

4.4.45.1. Example(s)
In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.

try
status = CDFrenameAttr (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")
catch ex as Exception
end try
4.4.46 CDFsetAttrgEntryDataSpec

integer CDFsetAttrgEntryDataSpec (¢ out -- Completion status code.
id as long, * in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in -- gEntry number.
dataType as integer) in -- Data type.

CDFsetAttrgEntryDataSpec respecifies the data type of a gEntry of a global attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for descriptions of equivalent data types.
The arguments to CDFsetAttrgEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDEF.

200

attrNum Global attribute number.
entryNum gEntry number.

dataType The new data type.

4.4.46.1. Example(s)

The following example modifies the third entry’s (entry number 2) data type of the global attribute MY ATTR in a
CDF. It will change its original data type from CDF INT2 to CDF_UINT2.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim entryNum as integer ¢ gEntry number.

Dim dataType as integer ¢ The new data type
entryNum = 2

dataType = CDF_UINT2
numElems = 1

try
status = CDFsetAttrgEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”), entryNum, dataType)
catch ex as Exception

end try

4.4.47 CDFsetAttrrEntryDataSpec

integer CDFsetAttrrEntryDataSpec (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in -- rEntry number.

dataType as integer, in -- Data type.

numElements as integer) in -- Number of elements.

CDFsetAttrrEntryDataSpec respecifies the data specification (data type and number of elements) of an rEntry of a
variable attribute in a CDF. The new and old data type must be equivalent, and the number of elements must not be
changed. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrrEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.
entryNum rEntry number.

dataType The new data type.
numElements The new number of elements.

201

4.4.47.1. Example(s)

The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR?”, in the
variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF INT2 to CDF UINT2.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim dataType as integer

Dim numElements as integer ¢ Data type and number of elements.

dataType = CDF_UINT2
numElems = 1

try

status = CDFsetAttrrEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”),
CDFgetVarNum (id, “MY_VAR?”), dataType, numElems)

catch ex as Exception

end try

4.4.48 CDFsetAttrScope

integer CDFsetAttrScope (¢ out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

scope as integer) in -- Attribute scope.

CDFsetAttrScope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 2.13.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDFsetAttrScope are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

scope The new attribute scope. The value should be either VARIABLE SCOPE or
GLOBAL SCOPE.

4.4.48.1. Example(s)

The following example changes the scope of the global attribute named MY ATTR to a variable attribute
(VARIABLE SCOPE).

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim scope as integer ¢ New attribute scope.

202

scope = VARIABLE SCOPE
try

status = CDFsetAttrScope (id, CDFgetAttrNum (id, “MY_ATTR”), scope)
catch ex as Exception

end try

4.4.49 CDFsetAttrzEntryDataSpec

integer CDFsetAttrzEntryDataSpec (out -- Completion status code.
id as long, “ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer, in -- zEntry number.
dataType as integer) in -- Data type.

CDFsetAttrzEntryDataSpec modifies the data type of a zEntry of a variable attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for the description of equivalent data types.
The arguments to CDFsetAttrzEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.
entryNum zEntry number that is the zVariable number.
dataType The new data type.

4.4.49.1. Example(s)

The following example respecifies the data type of the attribute entry of the attribute named MY ATTR that is
associated with the zVariable MY VAR. It will change its original data type from CDF INT2 to CDF UINT?2.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim dataType as integer ¢ Data type

try

dataType = CDF_UINT2
numElems = 1
status = CDFsetAttrzEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR?”),
CDFgetVarNum (id, “MY_VAR?”), dataType)
. catch ex as Exception

end try

203

4.5 Quick Read Functions

This section provides a set of easy-to-use read functions that each will return an object of C#’s Dictionary, a set of
key/value pairs. The key is either a string or an integer. The value can be a generic scalar or array of value of integer,
floating value, or string, or another dictionary (of dictionaries). The returned information covers CDF basic
information, global attributes, and variables’ specification, metadat and data. Each functions is made of calls from other

lower-level functions.

4.5.1 ReadCDF

Dictionary (Of string,object) ReadCDF (
id as long)

Dictionary (Of string,object) ReadCDF (
id as long,
encoding as bool)

Dictionary (Of string,object) ReadCDF (
id as long,

encoding as bool,

basic as bool,

global as bool,

varall as bool)

Dictionary (Of string,object) ReadCDF (
id as long,

encoding as bool,

basic as bool,

global as bool,

varspec as bool,

varmeta as bool,

vardata as bool)

Dictionary (Of string,object) ReadCDF (
id as long,

encoding as bool,

basic as bool,

global as bool,

varspec as bool,

varmeta as bool,

vardata as bool,

noentry as bool)

Dictionary (Of string,object) ReadCDF (
id as long,

encoding as bool,

basic as bool,

global as bool,

varspec as bool,

varmeta as bool,

vardata as bool,

noentry as bool,

varshead as bool)

204

out — A dictionary .
in -- CDF identifier.

out — A dictionary .
in -- CDF identifier.
in -- Whether to encode CDF epoch type

out — A dictionary .

in -- CDF identifier.

in -- Whether to encode CDF epoch type

in -- Whether to get CDF basic information
in -- Whether to get global metadata

in -- Whether to get all variables’ information

out — A dictionary .

in -- CDF identifier.

in -- Whether to encode CDF epoch type

in -- Whether to get CDF basic information

in -- Whether to get global metadata

in -- Whether to get all variables’ specifications
in -- Whether to get all variables’ metadata

in -- Whether to get all variables’ data

out — A dictionary .

in -- CDF identifier.

in -- Whether to encode CDF epoch type

in -- Whether to get CDF basic information

in -- Whether to get global metadata

in -- Whether to get all variables’ specifications
in -- Whether to get all variables’ metadata

in -- Whether to get all variables’ data

in -- Whether to show attributes without entry

out — A dictionary .

in -- CDF identifier.

in -- Whether to encode CDF epoch type

in -- Whether to get CDF basic information

in -- Whether to get global metadata

in -- Whether to get all variables’ specifications
in -- Whether to get all variables’ metadata

in -- Whether to get all variables’ data

in -- Whether to show attributes without entry

in -- Whether to add an extra level for variables

ReadCDF reads all CDF information or just the specific elements. There are three main key/value elements in the top
of retrieved dictionary. The keys are “CDFInfo”, “GlobalAttributes” and “Variables”. Each of the values is also a
dictionary itself. There may be another key/value element: “NoEntryAttributes” in the top dictionary.

The argument(s) to ReadCDF is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,
encoding Whether to encode any CDF epoch data type in global or variable metadata into date/time
string.
basic Whether to read the CDF basic specification information.
global Whether to read the global attributes.
varall Whether to read variables.
varspec Whether to read all variables’ specificationa.
varmeta Whether to read all variables’ metadata.
vardata Whether to read all variables’ data
noentry Whether to collect the attribute names that don’t have any entry data
varshead Whether to place an extra dictionary level for variables informsation. The default is true.

4.5.1.1. Example(s)

The following example reads the whole information from the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim cdf as Dictionary (Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)
cdf = ReadCDF (id)
CDFUtils.PrintDictionary (cdf)

catch ex as CDFException

End try

The output of the dictionary dump from the CDF looks as follows.

The four keys are CDFInfo, GlobalAttributes, Variables and NoEntryAttributes. The value for CDFinfo is a
dictionary, which contains the basic information about the CDF. The value for GlobalAttributes is a dictionary of
dictionaries. Each element in the dictionary has the attribute name as the key with its value being another dictionary
(with entry number being the key and value being the entry). The value for Variables is a dictionary of dictionaries.
Each element in the dictionary is for information from a variable. The variable name is then the key for its
specification, metadata and data, each of which is also a dictionary. If there is any attribute(s), global or variable, that
has no entry data, its name will be collected in a list as a “GlobalAttributes” or “VariableAttributes” key element in
the “NoEntryAttributes” dictionary.

205

CDFInfo =>
Version =>"3.7.0"
Majority => 1
Format => 1
Encoding => 6

GlobalAttritbues =>
Project
0o=>".."
Pl =
0 => "Mr.Smith"
Text=>
0=>“Line 1”
1 =>“Line 2”

Variables =>
Varl =>
Varlnfo
DataType => 2
NumElements => 1
NumDims => 1

Key:VarMetaData =>
VALIDMIN => 20
VALIDMAX => 90

VarData=>123
Var2 =>
Varlnfo =>
DataType =>4~
NumElements => 1
NumDims => 0

VarMetaData =>
VALIDMIN => 2000
VALIDMAX => 9000

VarData => 1
2
3
Var3 =>
Varlnfo =>
DataType => 45
NumElements => 1
NumDims => 1

206

VarMetaData =>
VALIDMIN => 20.0
VALIDMAX =>90.0

VarData=>1.12.23.3

NoEntryAttributes =>
GlobalAttributes => "g1"
VariableAttributes => "al"

4.5.2 ReadCDFGlobalAttributes

Dictionary (Of string,object) ReadCDFGlobal Attributes (¢ out— A dictionary .
id as long) “ in-- CDF identifier.
Dictionary (Of string,object> ReadCDFGlobalAttributes (¢ out — A dictionary .
id as long, ¢ in-- CDF identifier.

encoding as bool) in -- Whether to encode CDF epoch type

ReadCDFGlobalAttributes reads the global attributes for a given CDF. The value(s) in the key/value pair(s) from the
returned dictionary can be a dictionary itself.

The argument to ReadCDFGlobal Attributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.
Optionally,
encoding Whether to encode any CDF epoch data type in global or variable metadat.

4.5.2.1. Example(s)
The following example reads the global attributes from the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim meta as Dictionary(Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)
meta = ReadCDFGlobalAttributes (id)
CDFUtils.PrintDictionary (meta)

catch (ex as CDFException)

End try

207

The output of the dictionary dump from the global attributes in the CDF looks as follows:

Each key field represents a global attribute name, and its value, which is another diectionary of <integer,
object> type pair(s). The number represents the entry number and the object can be a scalar or array of an entry type.

Project =>
0 => "Using the CDFJava API "
PI
3 =>"Ernie Els"
Test =>
0=>5.3432
2=>55
3=>5510.2
4=>1
5=>123
6 =>-32768
7=>12
8§=>3
9=>45
10 => "This is a string"
11 =>4294967295
12 => 4294967295 2147483648
13 => 65535
14 => 65535 65534
15 =>255
16 => 255254
TestDate =>
1 =>"2002-04-25T00:00:00.000"
2 =>"2008-02-04T06:08:10.012014016"
epTestDate =>
0 =>"2004-05-13T15:08:11.022033044055"

4.5.3 ReadCDFInfo

Dictionary (Of string,object) ReadCDFInfo (¢ out— A dictionary .
id as long) “ in-- CDF identifier.

ReadCDFInfo reads the basic information about a CDF.
The argument to ReadCDFInfo is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.5.3.1. Example(s)
The following example reads the whole information from the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim cdf as Dictionary (Of string, object) ¢ Retrieved information.
try

208

status = CDFopen (“test”, id)
cdf = ReadCDFInfo (id)
CDFUtils.PrintDictionary (cdf)

catch ex as CDFException

End try

The output of the basic CDF information looks as follows (first field as the key and second field as the value):

Version =>"3.7.0"

Majority => "ROW"

Format => "SINGLE"
Encoding => "IBMPC"
NumGlobalAttrs => 5
NumNumVarAttrs => 5
NumVars => 21
LastLeapSecond => 20150701

4.5.4 ReadCDFVariable

Dictionary (Of string,object) ReadCDF Variable(¢ out— A dictionary .

id as long, “ in-- CDF identifier.
varid as integer) ¢ in -- variable identifier.
Dictionary<string,object> ReadCDF Variable(¢ out— A dictionary .

id as long, ¢ in-- CDF identifier.

varid as long, in -- variable identifier.

encoding as bool)

in -- Whether to encode CDF epoch type.

ReadCDFVariable reads the information from a specified variable in a CDF into a dictionary. The variable information
includes the variable specification with key: “VarInfo”, its metadata with key: “VarMetaData” and all data with key:
“VarData”, if they exist. The retrieved information consists of the information from these three functions:

ReadCDFVariableInfo, ReadCDFVariableAttributes and ReadCDF VariableData.

The argument to ReadCDFVariable is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopen.

varid Variable identifier in the CDF. This identifier is based on the CDF open with
ZMODEon2 (all variables are being handled as zVariables) if there are rVariables and
zVariables in a CDF. The variable identifier reflects the variable after renumbered.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string.

4.5.4.1. Example(s)

The following example collects the information from a variable ‘Varl’ in the CDF, test.cdf and displays it.

209

Dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim varid as integer Variable identifier.
Dim var as Dictionary (Of string, object) Retrieved information.

3

3

try
status = CDFopen (“test”, id)
status = CDFsetzMode (id, ZzMODEon2)

varid = CDFgetVarNum (id, “Varl”)
var = ReadCDFVariable (id, varid)

catch ex as CDFException

End try

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level
for variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is
another dictionary.

Varlnfo =>
DataType => 2
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767

VarMetaData =>
VALIDMIN =>-100
VALIDMAX => 180
FILLVAL =>-999

VarData => 100 200 300
-32767 -32767 -32767
102030
4032767 -32768
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
112233
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767

210

4.5.5 ReadCDFVariables

Dictionary (Of string,object) ReadCDF Variables(¢ out— A dictionary .
id as long) “ in -- CDF identifier.
Dictionary (Of string,object) ReadCDF Variables(¢ out— A dictionary .
id as long, ¢ in -- CDF identifier.

encoding as bool) in -- Whether to encode CDF epoch type.

ReadCDFVariables reads the information from all variables in a CDF into a dictionary. Each element in the dictionary
has the variable name as the key and its information as the value, which is a diectionary itself. The variable information
includes the variable specification (with key: “VarInfo”), its metadata (with key: “VarMetaData”) and all data (with
key: “VarData”), if they exist.
The argument to ReadCDF Variables is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopen.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string for metadata.

4.5.5.1. Example(s)

The following example collects the information from a variable “Varl’ in the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim cdf as Dictionary (Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)
cdf = ReadCDFVariables (id)

CDFUtils.PrintDirectionary (cdf)
catch ex as CDFException

End try

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level
for variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is
another dictionary.

Varl =>
Varlnfo =>
DataType => 1
NumElements => 1
NumDims => 1

211

DimSizes => 3
NumWrittenRecs => 1
PadValue => -127
VarMetaData =>
VALIDMIN => 20
VALIDMAX => 90
VarData=>123
Var2 =>
Varlnfo =>
DataType => 11
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 3
PadValue => 254
VarData => 254 254 5
152535
100 128 255
Var3 =>
Varlnfo =>
DataType =>2
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767
VarMetaData =>
VALIDMIN => -100
VALIDMAX => 180

VarData => 100 200 300
-32767 -32767 -32767
102030
4032767 -32768
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767

4.5.6 ReadCDFVariableAttributes

Dictionary (Of string,object) ReadCDFVariableAttributes(¢ out— A dictionary .

id as long, ¢ in-- CDF identifier.
varid as integer) ¢ in -- variable identifier.
Dictionary<string,object> ReadCDF VariableAttributes(¢ out— A dictionary .

id as long, “ in-- CDF identifier.

in -- variable identifier.
in -- Whether to encode CDF epoch type.

varid as integer,
encoding as bool)

ReadCDFVariableAttributes reads the specified variable’s metadata in a CDF into a dictionary. The key for the
key/value pair(s) in the dictionary is the variable attribute name.

212

The argument to ReadCDF VariableAttributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varid Variable identifier in the CDF. This identifier is based on the CDF open with
ZMODEon2 (all variables are being handled as zVariables) if there are rVariables and
zVariables in a CDF. The variable identifier reflects the variable after renumbered.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string.

4.5.6.1. Example(s)
The following example collects the metadat from a variable ‘Varl’ in the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim attrs as Dictionary (Of string, object) ¢ Retrieved information.

try

status = CDFopen (“test”, id)

status = CDFsetzMode (id, zZMODEon2)
varid = CDFgetVarNum (id, “Varl”)

attrs = ReadCDFVariableAttributes (id, varid)
CDFUtils.PrintDictionary (attrs)

Catch ex as CDFException

End try

The output of the variable attributes dictionary dump looks as follows (the key is variable attribute name):

VALIDMIN =>-100
VALIDMAX => 180
FILLVAL =>-999

4.5.7 ReadCDFVariableData

object ReadCDF VariableData(¢ out— A dictionary .
id as long, “ in-- CDF identifier.
varid as integer) ¢ in -- variable identifier.

ReadCDFVariableData reads the specified variable’s data in a CDF into an object.

213

The argument to ReadCDFVariableData is defined as follows:

id

varid

4.5.7.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Variable identifier in the CDF. This identifier is based on the CDF open with
ZMODEon2 (all variables are being handled as zVariables) if there are rVariables and
zVariables in a CDF. The variable identifier reflects the variable after renumbered.

The following example reads the full data from a variable ‘Varl’ in the CDF, test.cdf.

Dim id as long

Dim status as integer
Dim varid as integer
Dim data as object

try
status = CDFopen (“test”, id)
status = CDFsetzMode (id, ZMODEon2)

varid = CDFgetVarNum (id, “Varl”)
data = ReadCDFVariableData (id, varid)

Catch ex as CDFException

¢ CDF identifier.

¢ Returned status code.
¢ Variable identifier.

¢ Retrieved data.

End try

4.5.8 ReadCDFVariablelnfo
Dictionary (Of string,object) ReadCDF VariableInfo(¢ out— A dictionary .

id as long,

varid as integer)

¢ in -- CDF identifier.
in -- variable identifier.

Dictionary (Of string,object) ReadCDFVariableInfo(¢ out— A dictionary .

id as long,

varid as integer,
encoding as bool)

“ in-- CDF identifier.
‘ in -- variable identifier.
in -- Whether to encode CDF epoch type.

3

ReadCDF VariableInfo reads the specified variable’s specification in a CDF into a dictionary.

The argument to ReadCDF Variablelnfo is defined as follows:

id

varid

Optionally,

encoding

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Variable identifier in the CDF. This identifier is based on the CDF open with
ZMODEon2 (all variables are being handled as zVariables) if there are rVariables and
zVariables in a CDF. The variable identifier reflects the variable after renumbered.

Whether to encode the CDF epoch data type into date/time string.

214

4.5.8.1. Example(s)

The following example collects the basic information from a variable ‘Varl’ in the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varid as integer Variable identifier.
Dim info as Dictionary (Of string, object) Retrieved information.

3

3

try

status = CDFopen (“test”, id)

status = CDFsetzMode (id, ZMODEon2)
varid = CDFgetVarNum (id, “Varl”)

info = ReadCDFVariablelnfo (id, varid)
CDFUtils.PrintDictionary (info)

catch ex as CDFException

End try

The output of the dictionary dump for the specification of the variable looks as follows (first field as the key and
second field as the value):

DataType => 2
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767

4.5.9 ReadCDFVariables

Dictionary (Of string,object) ReadCDF Variables(¢ out— A dictionary .
id as long) “ in-- CDF identifier.
Dictionary (Of string,object) ReadCDF Variables(¢ out— A dictionary .
id as long, “ in-- CDF identifier.

encoding as bool) in -- Whether to encode CDF epoch type.

ReadCDFVariables reads the information from all variables in a CDF into a dictionary. Each element in the dictionary
has the variable name as the key and its information as the value, which is a diectionary itself. The variable information
includes the variable specification (with key: “VarInfo”), its metadata (with key: “VarMetaData”) and all data (with
key: “VarData”), if they exist.

The argument to ReadCDF Variables is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,

215

encoding Whether to encode the CDF epoch data type into date/time string for metadata.

4.5.9.1. Example(s)

The following example collects the information from a variable ‘Varl’ in the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim varid as integer Variable identifier.
Dim cdf as Dictionary (Of string, object) ¢ Retrieved information.

3

try
status = CDFopen (“test”, id)
cdf = ReadCDFVariables (id)

CDFUtils.PrintDirectionary (cdf)
catch ex as CDFException

End try

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level
for variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is
another dictionary.

Varl =>
Varlnfo =>
DataType => 1
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 1
PadValue => -127
VarMetaData =>
VALIDMIN => 20
VALIDMAX => 90
VarData=>123
Var2 =>
Varlnfo =>
DataType => 11
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 3
PadValue => 254
VarData => 254 254 5
152535
100 128 255
Var3 =>
Varlnfo =>
DataType => 2

216

NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767
VarMetaData =>
VALIDMIN => -100
VALIDMAX => 180

VarData => 100 200 300
-32767 -32767 -32767
102030
4032767 -32768
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767

4.5.10 ReadCDFVariablesData

Dictionary (Of string,object) ReadCDF VariableAttributesData(¢ out— A dictionary .
id as long) “ in-- CDF identifier.
Dictionary<string,object> ReadCDF VariableAttributesData(¢ out— A dictionary .
id as long, “ in-- CDF identifier.

encoding as bool) in -- Whether to encode CDF epoch type.

ReadCDFVariableAttributesData reads all variables data in a CDF into a dictionary. The key for the key/value pair(s)
in the dictionary is the variable name and data.

The argument to ReadCDF VariableAttributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,
encoding Whether to encode the CDF epoch data type into date/time string.

4.5.10.1. Example(s)
The following example collects all data from the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim varid as integer Variable identifier.
Dim data as Dictionary (Of string, object) Retrieved information.

3

3

try
status = CDFopen (“test”, id)
data = ReadCDFVariablesData (id)

217

CDFUtils.PrintDictionary (attrs)
Catch ex as CDFException
End try
The output of the variable attributes dictionary dump looks as follows (the key is variable attribute name):
VALIDMIN =>-100

VALIDMAX => 180
FILLVAL =>-999

218

Chapter 5

S Interpreting CDF Status Codes

Most CDF APIs return a status code of type int. The symbolic names for these codes are defined in CDFException.cs
and should be used in your applications rather than using the true numeric values. Appendix A explains each status
code. When the status code returned from a CDF API is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These for most cases
are error codes, thus an exception might be thrown.

The following example shows how you could check the status code returned from CDF functions.
dim status as integer
try
I status = CDFfunction (...) ¢ any CDF function returning integer
catch ex as Exception
end try
In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.
dim status as integer = ex.GetCurrentStatus()
dim errorMsg as string = ex.GetStatusMsg(status)

Explanations for all CDF status codes are available to your applications through the method CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

219

Chapter 6

6 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values. These
functions may be called by applications using the CDF_EPOCH and CDF _EPOCH16 data types and are included in
the CDF library. The Concepts chapter in the CDF User's Guide describes EPOCH values. All these APIs are defined
as static methods in CDFAPIs class. The date/time components for CDF_EPOCH and CDF_EPOCH16 are UTC-
based, without leap seconds.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch.

For CDF that epoch values for CDF_EPOCH and CDF _EPOCHI16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

6.1 computeEPOCH

double computeEPOCH(¢ out -- CDF_EPOCH value returned.
year as integer, “in -- Year (AD, e.g., 1994).
month as integer, “in -- Month (1-12).

day as integer, “in -- Day (1-31).

hour as integer, ‘in -- Hour (0-23).

minute as integer, ‘in -- Minute (0-59).

second as integer, “in -- Second (0-59).

msec as integer) ¢ in -- Millisecond (0-999).

computeEPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

6.2 EPOCHbreakdown

void EPOCHbreakdown(

epoch as double, ¢ in -- The CDF_EPOCH value.
year as integer, ‘ out -- Year (AD, e.g., 1994).
month as integer, ‘ out -- Month (1-12).

day as integer, ¢ out -- Day (1-31).

hour as integer, ¢ out -- Hour (0-23).

minute as integer, ¢ out -- Minute (0-59).

second as integer, ¢ out -- Second (0-59).

msec as integer) ¢ out -- Millisecond (0-999).

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

220

6.3 toEncodeEPOCH

string toEncode EPOCH(¢ out -- Encode date/time string.
epoch as double) ‘in -- The CDF_EPOCH value.
string toEncode EPOCH(¢ out -- Encode date/time string.
epoch as double, ¢ in -- The CDF_EPOCH value.
style as int) ¢ in -- The encoding style.
string[] toEncodeEPOCH(¢ out -- Encode date/time strings.
epochs as double[]) ¢ in -- The CDF_EPOCH values.
string[] toEncodeEPOCH(* out -- Encode date/time strings.
epochs as double[], ¢ in -- The CDF_EPOCH values.

style as int) in -- The encoding style.

toEncodeEPOCH encodes a CDF_EPOCH value(s) into a date/time character string(s) in one of the standard forms.
The style is between the value 0 and 4. With style 0, it is similar to calling encodeEPOCH. With style 1, 2 3 and 4, it is
similar to calling encodeEPOCH1, encodeEPOCH2, encodeEPOCH3 and encodeEPOCHA4, respectively. Without style,
the default style, 4, is used. Refer the following sections to see what a standard date/time string looks like for each
style.

6.4 encodeEPOCH

void encodeEPOCH(
epoch as double ¢ in -- The CDF_EPOCH value.
epString as string) ¢ out -- The standard date/time string.

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

6.5 encodeEPOCHI1

void encodeEPOCHI1(
epoch as double “in -- The CDF_EPOCH value.
epString as string) ¢ out -- The alternate date/time string.

encodeEPOCH1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

6.6 encodeEPOCH?2

void encodeEPOCH2(
epoch as double ‘in -- The CDF_EPOCH value.
epString as string) ¢ out -- The alternate date/time string.

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is

yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

6.7 encodeEPOCH3

void encodeEPOCH3(

221

epoch as double
epString as string)

¢ in -- The CDF_EPOCH value.
¢ out -- The alternate date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.8 encodeEPOCH4

void encodeEPOCH4(
epoch as double
epString as string)

¢ in -- The CDF_EPOCH value.
¢ out -- The ISO 8601 date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate, ISO 8601 date/time character string. The format of
the string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.9 encodeEPOCHXx

void encodeEPOCHXx(
epoch as double
format as string
encoded as string)

¢ in -- The CDF_EPOCH value.
¢ in -- The format string.

¢ out -- The custom date/time string.
encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month ("Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 6.3) would

be. ..
<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

222

6.10 toParseEPOCH

double toParseEPOCH(¢ out -- The CDF_EPOCH value.
epString as string) in -- The date/time string.

double[] toParseEPOCH(* out -- The CDF_EPOCH values.
epStrings as string[]) in -- The date/time strings.

toParseEPOCH parses an encoded, standard date/time character string(s) and returns a CDF_EPOCH value(s). The
format of the string is that produced by one of the encoding functions, e.g., toEncodeEPOCH, encodeEPOCH,
encodeEPOCHI1, etc. If an illegal field is detected in the string, the value returned will be
ILLEGAL EPOCH_VALUE.

6.11 parseEPOCH

double parseEPOCH(¢ out -- CDF_EPOCH value.
epString as string) “in -- The standard date/time string.

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH method described in Section 6.3. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

6.12 parseEPOCH1

double parseEPOCHI(¢ out -- CDF_EPOCH value.
epString as string) “ in -- The alternate date/time string.

parseEPOCHI parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH1 method described in Section 6.5. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

6.13 parseEPOCH2

double parseEPOCH2(¢ out -- CDF_EPOCH value.
epString as string) “in -- The alternate date/time string.

parseEPOCH?2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH2 method described in Section 6.6. If an illegal field is detected in the
string the value returned will be ILLEGAL _EPOCH_VALUE.

6.14 parseEPOCH3

double parseEPOCH3(¢ out -- CDF_EPOCH value.
epString as string) “ in -- The alternate date/time string.

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH3 method described in Section 6.7. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

6.15 parseEPOCH4

double parseEPOCH4(¢ out -- CDF_EPOCH value.
epString as string) “ in -- The alternate date/time string.

223

parseEPOCH3 parses an alternate, ISO 8601 date/time character string and returns a CDF _EPOCH value. The
format of the string is that produced by the encodeEPOCH3 method described in Section 6.8. If an illegal field is
detected in the string the value returned will be ILLEGAL EPOCH_VALUE.

6.16 computeEPOCHI16

double computeEPOCH16(¢ out -- status code returned.
year as integer, “in -- Year (AD, e.g., 1994).
month as integer, “in -- Month (1-12).

day as integer, “in -- Day (1-31).

hour as integer, ‘in -- Hour (0-23).

minute as integer, “in -- Minute (0-59).
second as integer, “in -- Second (0-59).

msec as integer, ¢ in -- Millisecond (0-999).
microsec as integer, ¢ in -- Microsecond (0-999).
nanosec as integer, ¢ in -- Nanosecond (0-999).
picosec as integer, ‘ in -- Picosecond (0-999).
epoch as double()) ¢ out-- CDF_EPOCH16 value

computeEPOCH16 calculates a CDF_EPOCHI16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

6.17 EPOCHI16breakdown

void EPOCH16breakdown(

epoch as double(), ‘in -- The CDF_EPOCHI16 value.
year as integer, “ out -- Year (AD, e.g., 1994).
month as integer, out -- Month (1-12).

day as integer, out -- Day (1-31).

hour as integer, ¢ out -- Hour (0-23).

minute as integer, out -- Minute (0-59).

second as integer, out -- Second (0-59).

msec as integer, ¢ out -- Millisecond (0-999).
microsec as integer, out -- Microsecond (0-999).
nanosec as integer, out -- Nanosecond (0-999).
picosec as integer) ¢ out -- Picosecond (0-999).

EPOCH]16breakdown decomposes a CDF_EPOCH]16 value into the individual components.

6.18 toEncodeEPOCH16

string toEncodeEPOCH16(¢ out -- Encode date/time string.
epoch as double[]) ‘in -- The CDF_EPOCH value.
string toEncodeEPOCH16(¢ out -- Encode date/time string.
epoch as double[], “in -- The CDF_EPOCH value.

style as int) in -- The encoding style.
toEncodeEPOCH16 encodes a CDF_EPOCH16 value, a two-double array, into a date/time character string in one of
the standard forms. The style is between the value 0 and 4. With style 0, it is similar to calling encodeEPOCH16. With
style 1, 2 3 and 4, it is similar to calling encodeEPOCH16 1, encodeEPOCH16 2, encodeEPOCH16 3 and
encodeEPOCH16_4, respectively. Without style, the default style, 4, is used. Refer the following sections to see what a
date/time string looks like for each style.

224

6.19 encodeEPOCH16

void encodeEPOCH16(
epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) ‘out -- The date/time string.

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the
minute (0-59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the
nanosecond (0-999), and ppp is the picosecond (0-999).

6.20 encodeEPOCHI16 1

void encodeEPOCH16_1(
epoch as double(), ‘in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The date/time string.

encodeEPOCH16 1 encodes a CDF_EPOCHI16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

6.21 encodeEPOCH16 2

void encodeEPOCHI16 2(
epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The date/time string.

encodeEPOCH16 2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

6.22 encodeEPOCH16 3

void encodeEPOCH16 3(
epoch as double(), ¢ in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The alternate date/time string.

encodeEPOCH16 3 encodes a CDF_EPOCHI16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.23 encodeEPOCH16 4

void encodeEPOCHI16_4(
epoch as double(), ¢ in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The alternate date/time string.

encodeEPOCH16 3 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The
format of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

225

6.24 encodeEPOCH16 x

void encodeEPOCHI16 x(

epoch as double(), ¢ in -- The CDF_EPOCHI16 value.
format as string ¢ in -- The format string.

encoded as string) ¢ out -- The date/time string.
encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month ("Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .
<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

6.25 toParseEPOCHI16

double[] toParseEPOCH]16(¢ out -- The CDF_EPOCH]16 value.
epString as string) ‘ in -- The date/time string.

toParseEPOCH16 parses a encoded, standard date/time character string and returns a CDF_EPOCH16 value, a two-
double array. The format of the string is that produced by one of the encoding functions, e.g., toEncodeEPOCH16,
encodeEPOCH16, encodeEPOCHI16 1, etc. If an illegal field is detected in the string, the value returned will be
ILLEGAL EPOCH_VALUE.

6.26 parseEPOCHI16

double parseEPOCH16(¢ out -- The status code returned.

226

13

epString as string, in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the

string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL EPOCH_VALUE.

6.27 parseEPOCH16 1

double parseEPOCH16 1(¢ out -- The status code returned.
epString as string, ¢ in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16 1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.28 parseEPOCH16 2

double parseEPOCH16 2(¢ out -- The status code returned.
epString as string, ¢ in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.29 parseEPOCH16 3

double parseEPOCH16 3(¢ out -- The status code returned.
epString as string, ¢ in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH]16 value. The format of
the string is that produced by the encodeEPOCH16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.30 parseEPOCHI16 4

double parseEPOCH16_4(¢ out -- The status code returned.
epString as string, ¢ in -- The ISO 8601 date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16_4 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.31 EPOCHtoUnixTime

double EPOCHtoUnixTime(¢ out -- The Unix time returned.
epoch as double) ¢ in -- The CDF_EPOCH value
double() EPOCHtoUnixTime(¢ out -- The Unix times returned.
epochs as double()) ¢ in -- The CDF_EPOCH values

227

EPOCHtoUnixTime converts an epoch time(s) in CDF_EPOCH type into a Unix time(s). A CDF_EPOCH epoch, a
double, is milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.

6.32 UnixTimetoEPOCH

double UnixTimetoEPOCH (¢ out -- The CDF_EPOCH epoch value.
unixTime as double) in -- The Unix time value

double() UnixTimetoEPOCH (¢ out -- The CDF_EPOCH epoch values.
unixTimes as double()) in -- The Unix time values

UnixTimetoEPOCH converts a Unix time(s) to an epoch time(s) in CDF_EPOCH. A CDF_EPOCH epoch, a double, is
milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.
Converting the Unix time to EPOCH will only keep the resolution to milliseconds.

6.33 EPOCH16toUnixTime

double EPOCH16toUnixTime(¢ out -- The Unix time returned.
epoch as double()) ¢ in -- The CDF_EPOCH16 value

EPOCHI16toUnixTime converts an epoch time in CDF EPOCHI16 type, a two-double array, to a Unix time. A
CDF_EPOCH16 epoch is picoseconds from 0000-01-01T00:00:00.000.000.000.000, while Unix time, a double, is
seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds,
in its fractional part. Note: As CDF_EPOCH16 has much higher time resolution, sub-microseconds portion of its time
might get lost during the conversion.

6.34 UnixTimetoEPOCH16

double() UnixTimetoEPOCHI16 (¢ out -- The CDF_EPOCH]16 epoch value.
unixTimes as double) ¢ in -- The Unix time value

UnixTimetoEPOCH16 converts a Unix time to an epoch time in CDF_EPOCH16. A CDF _EPOCHI16 epoch, a two-
double array, is picoseconds from 0000-01-01T00:00:00.000.000.000.000, while Unix time, also a double, is seconds
from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to EPOCH]16.

228

7 TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME TT2000 values. These functions may
be called by applications using the CDF_TIME TT2000 data type and is included in the CDF library. The Concepts
chapter in the CDF User's Guide describes TT2000 values. All these APIs are defined as static methods in CDFAPIs
class. The date/time components for CDF_TIME TT2000 are UTC-based, with leap seconds.

The CDF TIME TT2000 data type is used to store

time values referenced from J2000 (2000-01-

01T12:00:00.000000000). For CDF, values in CDF_TIME_TT2000 are nanoseconds from J2000 with leap seconds

included. TT2000 data can cover years between 1707 and 2292.

7.1 computeTT2000

compueTT2000 is a overloaded function.

long computeTT2000(
year as double,

month as double,

day as double)

long computeTT2000(
year as double,

month as double,

day as double,

hour as double)

long computeTT2000(
year as double,

month as double,

day as double,

hour as double,

minute as double)

long computeTT2000(
year as double,

month as double,

day as double,

hour as double,

minute as double,
second as double)

long computeTT2000(
year as double,

month as double,

day as double,

hour as double,

minute as double,
second as double,
msec as double)

long computeTT2000(
year as double,

month as double,

day as double,

229

out -- CDF _TIME TT2000 value.
in -- Year (AD, e.g., 1994).

in -- Month (1-12).

in -- Day (1-31).

out -- CDF_TIME_TT2000 value.
in -- Year (AD, e.g., 1994).

in -- Month (1-12).

in -- Day (1-31).

in -- Hour (0-23).

out -- CDF _TIME TT2000 value.
in -- Year (AD, e.g., 1994).
in -- Month (1-12).
in -- Day (1-31).
in -- Hour (0-23).
‘in -- Minute (0-59).

out -- CDF_TIME_TT2000 value.
in -- Year (AD, e.g., 1994).
in -- Month (1-12).
in -- Day (1-31).
in -- Hour (0-23).
in -- Minute (0-59).
¢ in -- Second (0-59 or 0-60 if leap second).

out -- CDF_TIME_TT2000 value.

in -- Year (AD, e.g., 1994).

in -- Month (1-12).

in -- Day (1-31).

in -- Hour (0-23).

in -- Minute (0-59).

in -- Second (0-59 or 0-60 if leap second).
in -- Millisecond (0-999).

out -- CDF _TIME TT2000 value.
in -- Year (AD, e.g., 1994).

in -- Month (1-12).

in -- Day (1-31).

hour as double, ‘in -- Hour (0-23).

minute as double, ‘in -- Minute (0-59).

second as double, “in -- Second (0-59 or 0-60 if leap second).
msec as double, ‘in -- Millisecond (0-999).

usec as double) ¢ in -- Microsecond (0-999).

long computeTT2000(¢ out -- CDF_TIME TT2000 value.

year as double, “in -- Year (AD, e.g., 1994).

month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, “in -- Hour (0-23).

minute as double, ‘in -- Minute (0-59).

second as double, ¢ in -- Second (0-59 or 0-60 if leap second).
msec as double, ¢ in -- Millisecond (0-999).

usec as double, ¢ in -- Microsecond (0-999).

nsec as double) “in -- Nanosecond (0-999).

computeTT2000 calculates a CDF_TIME TT2000 value given the individual, UTC-based date/time components. If
an illegal component is detected, the value returned will be ILLEGAL TT2000 VALUE. The day componment can be
presented in day of the month or day of the year (DOY). If DOY form is used, the month componment must have a
value(s) of one (1).

NOTE: Even though this overloaded function uses double for all its parameter fields, all but the very last parameter
can not have a non-zero fractional part for simplifying the computation. An exception will be thrown if the rule is not
followed. For example, this call is allowed:

dm tt2000 as long = computeTT2000(2010.0, 10.0, 10.5)

But, this call will fail:

dim tt2000 as long = computeTT2000(2010.0, 10.0, 10.5, 12.5)

7.2 TT2000breakdown

void TT2000breakdown(

tt2000 as long, ¢ in -- The CDF_TIME TT2000.

year as double, ¢ out -- Year (AD, e.g., 1994).

month as double, ‘ out -- Month (1-12).

day as double, ¢ out -- Day (1-31).

hour as double, ‘ out -- Hour (0-23).

minute as double, ¢ out -- Minute (0-59).

second as double, ¢ out -- Second (0-59 or 0-60 if leap second).
msec as double, ¢ out -- Millisecond (0-999).

usec as double, ¢ out -- Microsecond (0-999).

nsec as double) ¢ out -- Nanosecond (0-999).

TT2000breakdown decomposes a CDF_TIME TT2000 value into the individual components.

7.3 toEncodeTT2000

string toEncodeTT2000(¢ out -- Encode date/time string.
epoch as long) “in -- The TT2000 value.
string toEncodeTT2000(¢ out -- Encode date/time string.
epoch as long, “in -- The TT2000 value.

style as int) in -- The encoding style.

230

string() toEncodeTT2000(¢ out -- Encode date/time strings.

epochs as long()) “in -- The TT2000 values.
string() toEncodeTT2000(¢ out -- Encode date/time strings.
epochs as long(), “in -- The TT2000 values.

style as int) in -- The encoding style.

toEncodeTT2000 encodes a CDF_TIME TT2000 value(s) into a date/time character string(s) in one of the standard
forms. The style is between the value 0 and 4. Without style, the default style is used, which is style 3. Refer the
following section to see what a date/time string looks like for each style.

7.4 encodeTT2000

encodeTT2000 is a overloaded function.

void encodeTT2000(
tt2000 as long ¢ in -- The CDF_TIME TT2000.
EpString as string) out -- The standard date/time string.

void encodeTT2000(

tt2000 as long ¢ in -- The CDF_TIME TT2000.
epString as string. out -- The standard date/time string.
style as int) in -- The encoded string style.

encodeTT2000 encodes a CDF TIME TT2000 value into one of the standard date/time UTC character strings.
Without the style, the default style of 3 is used, which makes the string in ISO 8601 format: yyyy-mm-ddT
hh:mm:ss.mmmuuunnn where yyyy is the year (1707-2292), mm is the month (01-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59 or 0-60 if leap second), mmm is the
millisecond (0-999), uuu is the microsecond (0-999) and nnn is the nanosecond (0-999).

For a style of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is the day of
the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the
year, hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999). The encoded string has a
length of TT2000_0 STRING_LEN (30).

For a style of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the month
(1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999). The encoded string has a length of
TT2000 1 STRING LEN (19).

For a style of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the month
(1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-59 or
0-60 if leap second). The encoded string has a length of TT2000 2 STRING LEN (14).

For a style of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.mmmuuunnn, where YYYY is the
year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59 or 0-60
if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the
nanosecond (0-999). The encoded string has a length of TT2000 3 STRING LEN (29).

For a style of value 4, the encoded UTC string is similar to style 3, with an addition of “Z” appended to the end. The
encoded string has a length of TT2000 4 STRING_LEN (30).

7.5 toParseTT2000

long toParseTT2000(¢ out -- CDF_TIME TT2000 value.

231

13

epString as string) in -- The standard date/time string.

long() toParseTT2000(¢ out -- CDF_TIME TT2000 values.
epString as string()) ‘in -- The encoded date/time strings.

toParseTT2000 parses a encoded date/time character string(s) and returns a CDF_TIME TT2000 value(s). The format
of the string is that produced by the toEncodeTT2000 or encodeTT2000 method described in Section 6.3 or 7.4. If an
illegal field is detected in the string, the value(s) returned will be ILLEGAL TT2000 VALUE.

7.6 parseTT2000

long parseTT2000(¢ out -- CDF_TIME TT2000 value.
epString as string) “in -- The encoded date/time string.

parseTT2000 parses an encoded date/time character string and returns a CDF_TIME TT2000 value. The format of the
string is that produced by the encodeTT2000 method described in Section 7.3 or 7.4. If an illegal field is detected in
the string the value returned will be ILLEGAL TT2000 VALUE.

7.7 CDFgetLastDateinLeapSecondsTable

void CDFgetLastDateinLeapSecondsTable(

year as integer out -- The year.
month as integer out -- The month.
day as integer) ¢ out -- The day.

3

3

CDFgetLastDateinLeapSecondsTable returns the last entry in the leap second table used by the CDF processing. This
date comes from the leap second table, either through an external text file, or the hard-coded table in the library code.
This information can tell whether the leap second table is up-to-date.

7.8 TT2000toUnixTime

double TT2000toUnixTime(“in -- The Unix time value.
epoch as long) “in -- The TT2000 epoch value.
double() TT2000toUnixTime(¢ in -- The Unix time values.
epochs as long()) ¢ in -- The TT2000 epoch values.

TT2000toUnixTime converts epoch time(s) in CDF TIME TT2000 (TT2000) type into Unix time(s). A
CDF _TIME TT2000 epoch, a 8-byte integer, is nanoseconds from J2000 with leap seconds, while Unix time, a double,
is seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of
microseconds, in its fractional part. Note: As CDF_TIME TT2000 has much higher time resolution, sub-microseconds
portion of its time might get lost during the conversion. Also, TT2000’s leap seconds will get lost during conversion.

7.9 UnixTimetoTT2000

long UnixTimetoTT2000 (“in -- The TT2000 epoch value.
epoch as double) “in -- The Unix time value.
long() UnixTimetoTT2000 (“in -- The TT2000 epoch values.
epochs as double()) ‘in -- The Unix time values.

UnixTimetoTT2000 converts Unix time(s) into epoch time(s) in CDF_TIME TT2000 (TT2000) type. A Unix time, a
double, is seconds from 1970-01-01T00:00:00.000 while a CDF TIME TT2000 epoch, a 8-byte integer, is
nanoseconds from J2000 with leap seconds. The Unix time can have sub-second, with a time resolution of
microseconds, in its fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to
TT2000.

232

8 CDF Utility Methods

Several methods are created that are mainly used to decipher the strings and their corresponding constant values or vice
verse. All these APIs are defined as static methods in CDFUtils class. The constant values are defined in
CDFConstants class.

8.1 CDFFileExists

boolean CDFFileExists(¢ out -- The file existence flag.
filename as string) ‘in -- The file name.

CDFFileExists method checks whether a CDF file by the given file name, with or without the .cdf extension, exists.
Even the file exists, CDFFileExists will not be able to verify whether it is a valid one. (Use CDFopen to validate it).

8.2 CDFgetChecksumValue

integer CDFgetChecksumValue(¢ out -- The checksum value.
checksum as string) ¢ in -- The file checksum type string.

CDFgetChecksumValue method returns the corresponding file checksum type value, based on the passed string. The
file checksum types and their values are as follows:

Type Value

NONE NO_CHECKSUM (0)
MD5 MDS5_CHECKSUM (1)
OTHER OTHER CHECKSUM

8.3 CDFgetCompressionTypeValue

integer CDFgetCompressionTypeValue(
compressionType as string)

13

out -- The compression type.
¢ in -- The compression type string.
CDFgetCompressionTypeValue method returns the corresponding compression type value, based on the passed string.
The compression types and values are as follows:

Type Value

NONE NO_COMPRESSION (0)
RLE RLE_COMPRESSION (1)
Huffman HUFF_COMPRESSION (2)
Adaptive Huffman AHUFF_COMPRESSION (3)
GZIp GZIP_COMPRESSION (5)

8.4 CDFgetDataTypeValue

integer CDFgetDataTypeValue(
dataType as string)

3

out -- The data type.
‘in -- The data type string.
CDFgetDataTypeValue method returns the corresponding data type value, based on the passed string. The data types
and their values are as follows:

Type Value

CDF BYTE CDF _BYTE (41)
CDF_CHAR CDF_CHAR (51)
CDF_UCHAR CDF _UCHAR (52)

233

8.5

CDFgetDecodingValue method returns the corresponding data decoding value, based on the passed string. The data

CDF_INTI

CDF_INTI (1)

CDF_UINTI CDF_UINTI (11)
CDF_INT2 CDF_INT2 (2)
CDF_UINT2 CDF_UINT2 (12)
CDF_INT4 CDF_INT4 (4)
CDF_UINT4 CDF_UINT4 (14)
CDF_INT8 CDF_INTS (8)
CDF_REAL4 CDF_REAL4 (21)
CDF_FLOAT CDF_FLOAT (44)
CDF_REALS CDF_REALS (22)
CDF_DOUBLE CDF_DOUBLE (45)
CDF_EPOCH CDF_EPOCH (31)

CDF_EPOCH16
CDF_TIME_TT2000

CDF_EPOCH16 (32)
CDF_TIME_TT2000 (33)

CDFgetDecodingValue

integer CDFgetDecodingValue(
decoding as string)

decodings and their values are as follows:

Type Value

NETWORK NETWORK DECODING (1)

SUN SUN _DECODING (2)

VAX VAX_DECODING (3)

DECSTATION DECSTATION_ DECODING (4)

SGi SGi DECODING (5)

IBMPC IBMPC _DECODING (6)

IBMRS IBMRS DECODING (7)

HOST HOST DECODING (8)

PPC PPC_DECODING (9)

HP HP_DECODING (11)

NeXT NeXT DECODING (12)

ALPHAOSF1 ALPHAOSF1_DECODING (13)

ALPHAVMSd ALPHAVMSd_DECODING (14)

ALPHAVMSg ALPHAVMSg DECODING (15)

ALPHAVMSi ALPHAVMSi_DECODING (16)
8.6 CDFgetEncodingValue

3

13

out -- The decoding value.

in -- The data decoding string.

3

integer CDFgetEncodingValue(
encoding as string)

out -- The encoding value.
¢ in -- The data encoding string.
CDFgetEncodingValue method returns the corresponding data encoding value, based on the passed string. The data
encodings and their values are as follows:

Type Value

NETWORK NETWORK ENCODING (1)
SUN SUN_ENCODING (2)

VAX VAX ENCODING (3)
DECSTATION DECSTATION_ENCODING (4)
SGi SGi_ENCODING (5)

IBMPC IBMPC_ENCODING (6)

234

IBMRS IBMRS ENCODING (7)

HOST HOST ENCODING (8)

PPC PPC_ENCODING (9)

HP HP_ENCODING (11)

NeXT NeXT ENCODING (12)
ALPHAOSFI1 ALPHAOSF1_ENCODING (13)
ALPHAVMSd ALPHAVMSd_ENCODING (14)
ALPHAVMSg ALPHAVMSg_ENCODING (15)
ALPHAVMS;i ALPHAVMSi ENCODING (16)

8.7 CDFgetFormatValue

integer CDFgetFormatValue(
format as string)

3

out -- The format value.
¢ in -- The file format string.
CDFgetFormatValue method returns the corresponding file format value, based on the passed string. The file formats
and their values are as follows:

Type Value
SINGLE" SINGLE FILE (1)
MULTI MULTI FILE (2)

8.8 CDFgetMajorityValue

integer CDFgetMajority Value(
majority as string)

13

out -- The majority value.
¢ in -- The data majority string.
CDFgetMajorityValue method returns the corresponding file majority value, based on the passed string. The file
majorities and their values are as follows:

Type Value
ROW ROW_MAIJOR (1)
COLUMN COLUMN_MAIJOR (2)

8.9 CDFgetSparseRecordValue

integer CDFgetSparseRecordValue(
sparseRecord as string)

3

out -- The sparse record value.
¢ in -- The sparse record string.
CDFgetSparseRecordValue method returns the corresponding sparse record value, based on the passed string. The
sparse records types and their values are as follows:

Type Value

NONE NO_SPARSERECORDS (0)
PAD PAD SPARSERECORDS (1)
PREV PREV_SPARSERECORDS (2)

8.10 CDFgetStringChecksum

string CDFgetStringChecksum(
checksum as integer)

3

out -- The checksum string.
in -- The file checksum type.

13

CDFgetStringChecksum method returns the corresponding file checksum string, based on the passed type. The file
checksum types and their values are the same as those defined in CDFgetChecksumValue method.

235

8.11 CDFgetStringCompressionType

string CDFgetStringCompressionType(
compressionType as integer)

13

out -- The compression string.
in -- The compression type.

3

CDFgetStringCompressionType method returns the corresponding compression type string, based on the passed type.
The file checksum types and their values are the same as those defined in CDFgetCompressionTypeValue method.

8.12 CDFgetStringDataType

string CDFgetStringDataType(
dataType as integer)

3

out -- The data type string.
in -- The data type.

3

CDFgetStringDataType method returns the corresponding data type string, based on the passed type. The data types
and their values are the same as those in CDFgetDataTypeValue method:

8.13 CDFgetStringDecoding

string CDFgetStringDecoding(
decoding as integer)

3

out -- The decoding string.
in -- The data decoding type.

3

CDFgetStringDecoding method returns the corresponding data decoding string, based on the passed type. The data
decodings and their values are as same as those defined in CDFgetDecodingValue:

8.14 CDFgetStringEncoding

string CDFgetStringEncoding(
encoding as integer)

3

out -- The encoding string.
in -- The data encoding type.

3

CDFgetStringEncoding method returns the corresponding data encoding string, based on the passed type. The data
encodings and their values are the same as those defined in CDFgetEncodingValue method.

8.15 CDFgetStringFormat

string CDFgetStringFormat(
format as integer)

3

out -- The format string.
in -- The file format type.

3

CDFgetStringFormat method returns the corresponding file format string, based on the passed type. The file formats
and their values are the same as those defined in CDFgetFormatValue method.:

8.16 CDFgetStringMajority

string CDFgetStringMajority(¢ out -- The majority string.
majority as integer) ¢ in -- The data majority type.

CDFgetStringMajority method returns the corresponding file majority string, based on the passed type. The file
majorities and their values are the same as those defined in CDFgetMajority Value method.

8.17 CDFgetStringSparseRecord

string CDFgetStringSparseRecord(
sparseRecord as integer)

13

out -- The sparse record string.
in -- The sparse record type.

3

CDFgetStringSparseRecord method returns the corresponding sparse record string, based on the passed type. The
sparse records types and their values are the same as those defined in CDFgetSparseRecordValue method.

236

8.18 DumpObject

void DumpObject (
data as object)

3

in -- The object to be dumped.

void DumpObject (

dataType as integer in -- The object’s data type.

data as object) in -- The object to be dumped.
DumpObject method dumps the data contents of an object retrieved from a CDF. For CDF epoch data, this method
will not encode it into date/time form.

3

3

8.19 PrintDictionary

void PrintDictionary (

data as Dictionary (Of string, data) “in -- The data dictionary.

void PrintDictionary (

data as Dictionary (Of integer, data)) ‘ in -- The data dictionary.

void PrintDictionary (

data as Dictionary (Of string, data), ‘ in -- The data dictionary.
indent as integer) “ in -- The indentation at output
void PrintDictionary (

data as Dictionary (Of integer, data), ¢ in -- The data dictionary.
indent as integer) “ in -- The indentation at output

PrintDictionary method prints out the data retrieved from a CDF in a dictionary form. The CDF epoch data will not be
encoded into date/time form.

9 CDF Exception Methods

Several methods in the CDFexception class can be used to check what happens when an exception is thrown by the
CDFAPIs, and react to it if necessary. All these APIs are defined as static methods. CDFException inherits from VB’s
Exception class.

9.1 CDFgetCurrentStatus
integer CDFgetCurrentStatus() ¢ out -- The status.
CDFgetCurrentStatus method returns the status when an exception is detected. The status value should be a negative

value. Chapter 5 covers all possible status codes. Use the following CDFgetStatusMsg method to decipher what the
status means.

9.2 CDFgetStatusMsg

string CDFgetStatusMsg(¢ out -- The descriptive message.
status as integer) ‘ in -- The exception status.

CDFgetStatusMsg method returns the descriptive information of the passed status.

237

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The CDFConstants class contains the numerical values (constants)
for each of the status codes (and for any other constants referred to in the explanations). The method CDFerror can be
used within a program to inquire the explanation text for a given status code.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the method completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR NAME TRUNC Attribute name truncated to CDF ATTR NAME LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD ALLOCATE RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

BAD ATTR NAME Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

BAD ATTR NUM Illegal attribute number specified. Attribute numbers must be

zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

239

BAD_BLOCKING FACTOR?

BAD_CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD CDF NAME

BAD_INT

BAD_CHECKSUM

BAD_COMPRESSION _PARM

BAD DATA_TYPE

BAD_DECODING

BAD_DIM_COUNT

BAD DIM_INDEX

BAD DIM_INTERVAL

BAD _DIM_SIZE

BAD_ENCODING

BAD _ENTRY NUM

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
that has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The CDF library does not
use the status code specified. [Error]

An illegal checksum mode received. It is invalid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in CDFConstants class for VB
applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in CDFConstants class for VB applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in CDFConstants class for VB applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for VB applications. [Error]

22 The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

240

BAD _FNC_OR_ITEM

BAD _FORMAT

BAD_INITIAL RECS

BAD MAJORITY

BAD_MALLOC

BAD_NEGtoPOSfp0 MODE

BAD _NUM_DIMS

BAD NUM_ELEMS

BAD NUM_VARS

BAD _READONLY_ MODE

BAD _REC_COUNT

BAD_REC_INTERVAL

BAD REC NUM

BAD_SCOPE

BAD_SCRATCH_DIR

BAD_SPARSEARRAYS PARM

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. [Error]

Unknown format specified. The CDF formats are defined in
CDFConstants class for VB applications. [Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. @~ The CDF variable
majorities are defined in CDFConstants class for VB
applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in CDFConstants class for VB applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_ MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]

Illegal read-only mode specified. The CDF read-only modes are
defined in CDFConstants class for VB applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

Illegal record interval specified. A record interval must be at
least one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in CDFConstants class for VB applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

241

BAD VAR _NAME

BAD VAR _NUM

BAD_zMODE

CANNOT _ALLOCATE_RECORDS

CANNOT CHANGE

CANNOT_COMPRESS

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for VB applications. [Error]

Illegal zMode specified. The CDF zModes are defined in
CDFConstants class for VB applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

N

. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

w

. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a wvariable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial” records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification where the
new specification is not equivalent to the old
specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

242

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE_ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

CDF_READ_ERROR

CDF_WRITE_ERROR

CHECKSUM_ERROR

CHECKSUM_NOT_ALLOWED

COMPRESSION_ERROR

CORRUPTED_V2_CDF

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF_ PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not
already been reached. [Error]

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

The data integrity verification through the checksum failed.
[Error]

The checksum is not allowed for old versioned files. [Error]

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in

the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

243

DECOMPRESSION _ERROR

DID NOT_COMPRESS

EMPTY COMPRESSED CDF

END_OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL_EPOCH_VALUE

ILLEGAL_FOR_SCOPE

ILLEGAL_IN_zMODE

ILLEGAL ON_V1 _CDF

MULTI_FILE FORMAT

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR_SELECTED

NO _CDF _SELECTED

An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program, which was creating/modifying, the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal.
[Error]

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

244

NO_DELETE_ACCESS

NO_ENTRY_ SELECTED

NO_MORE_ACCESS

NO PADVALUE SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO VAR SELECTED

NO_VARS_IN_CDF

NO_WRITE_ACCESS

NOT_A_CDF

NOT A CDF OR NOT SUPPORTED

PRECEEDING_RECORDS_ALLOCATED

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

This can occur if an older CDF distribution is being used to read
a CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of

records being allocated were automatically allocated as well.
[Informational]

245

READ ONLY DISTRIBUTION

READ ONLY MODE

SCRATCH_CREATE ERROR

SCRATCH_DELETE_ERROR
SCRATCH_READ ERROR
SCRATCH_WRITE_ERROR

SINGLE_FILE FORMAT

SOME_ALREADY_ ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_ COMPRESSION

UNKNOWN_SPARSENESS

UNSUPPORTED _OPERATION
VAR _ALREADY_ CLOSED

VAR CLOSE ERROR

VAR _CREATE_ERROR

VAR_DELETE_ERROR

VAR_EXISTS

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]
The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]

The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not

been corrupted. [Error]

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and

246

VAR _NAME_TRUNC

VAR_OPEN_ERROR

VAR _READ _ERROR

VAR_WRITE_ERROR

VIRTUAL RECORD_DATA

zVariables can not share names). Note that the CDF library when
comparing variable names ignores trailing blanks. [Error]

Variable name truncated to CDF VAR NAME LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational

247

Appendix B

B.1 VB-CDF APIs

The APIs that have the TYPE symbol use a general form for dealing with data, either variable value(s) or attribute
entry, in various data type for input and output. TYPE can be specified either in VB basic value or string type (scalar
or array) for writing out and reading from a CDF. The VB base Object class can also be used to represent a data object
reading from a CDF, which will be a scalar or array of value or string type

integer CDFattrCreate (id, attrName, attrScope, attrNum)

id as long “in
attrName as string ‘in
attrScope as integer “in
attrNum as integer < out
integer CDFattrEntryInquire (id, attrNum, entryNum, dataType, numElements)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElements as integer < out
integer CDFattrGet (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
value as TYPE ‘ out
integer CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)

id as long “in
attrNum as integer “in
attrName as string ‘ out
attrScope as integer ‘out
maxEntry as integer ‘out
integer CDFattrNum (id, attrName)

id as long “in
attrName as string ‘in
integer CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘in
numElements as integer ‘in
value as TYPE ‘in
integer CDFattrRename (id, attrNum, attrName)

id as long “in
attrNum as integer “in
attrName as string “in

integer CDFclose (id)

249

id as long in

integer CDFcloseCDF (id)
id as long in

integer CDFcloserVar (id, varNum)
id as long in
varNum as integer in

integer CDFclosezVar (id, varNum)
id as long in
varNum as integer “in

integer CDFconfirmAttrExistence (id, attrName)
id as long in

attrName as string ‘in

integer CDFconfirmgEntryExistence (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in

integer CDFconfirmrEntryExistence (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer ‘in

integer CDFconfirmrVarExistence (id, varNum)
id as long in
varNum as integer in

integer CDFconfirmrVarPadValueExistence (id, varNum)
id as long in

varNum as integer in

integer CDFconfirmzEntryExistence (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer ‘in

integer CDFconfirmzVarExistence (id, varNum)
id as long in
varNum as integer “in

integer CDFconfirmzVarPadValueExistence (id, varNum)
id as long in

varNum as integer “in

integer CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)

CDFname as strin “in
g

numDims as integer ‘in

dimSizes as integer() “in

encoding as integer ‘in

majority as integer ‘in

id as long ‘ out

250

integer CDFcreateAttr (id, attrName, scope, attrNum)

id as long “in
attrName as string ‘in
scope as integer “in
attrNum as integer ‘out
integer CDFcreateCDF (CDFname, id)

CDFname as string “in
id as long ‘ out
integer CDFcreaterVar (id, varName, dataType, numElements, recVary, dimVarys, varNum)

id as long “in
varName as string ‘in
dataType as integer “in
numElements as integer ‘in
recVary as integer ‘in
dimVarys as integer() ‘in
varNum as integer < out

integer CDFcreatezVar (id, varName, dataType, numElements, numDims, dimSizes, recVary, dimVarys, varNum)

id as long ‘in
varName as string ‘in
dataType as integer “in
numElements as integer “in
numDims as integer “in
dimSizes as integer() “in
recVary as integer ‘in
dimVarys as integer() ‘in
varNum as integer ‘out
integer CDFdelete (id)

id as long “in
integer CDFdeleteAttr (id, attrNum)

id as long “in
attrNum as integer “in
integer CDFdeleteAttrgEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
integer CDFdeleteAttrrEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in
integer CDFdeleteAttrzEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
integer CDFdeleteCDF (id)

id as long “in

integer CDFdeleterVar (id, varNum)

251

id as long in
varNum as integer in

integer CDFdeleterVarRecords (id, varNum, startRec, endRec)

id as long “in
varNum as integer ‘in
startRec as integer “in
endRec as integer “in

integer CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)

id as long “in
varNum as integer “in
startRec as integer “in
endRec as integer “in

integer CDFdeletezVar (id, varNum)
id as long in
varNum as integer ‘in

integer CDFdeletezVarRecords (id, varNum, startRec, endRec)

id as long “in
varNum as integer “in
startRec as integer “in
endRec as integer ‘in

integer CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)

id as long “in
varNum as integer ‘in
startRec as integer “in
endRec as integer ‘in

integer CDFdoc (id, version, release, text)
id as long in

version as integer out
release as integer ‘ out
text as string ‘ out

integer CDFerror (status, message)
status as integer in

message as string ‘ out
integer CDFgetAttrgEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
value as TYPE ‘ out
integer CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
dataType as integer < out
integer CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElems)

id as long “in
attrNum as integer “in

252

entryNum as integer
numElems as integer

integer CDFgetAttrMaxgEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrMaxrEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrMaxzEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrName (id, attrNum, attrName)
id as long

attrNum as integer

attrName as string

integer CDFgetAttrNum (id, attrName)
id as long
attrName as string

integer CDFgetAttrrEntry (id, attrNum, entryNum, value)
id as long

attrNum as integer

entryNum as integer

value as TYPE

integer CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElems)
id as long

attrNum as integer

entryNum as integer

numElems as integer

integer CDFgetAttrScope (id, attrNum, scope)
id as long

attrNum as integer

scope as integer

integer CDFgetAttrzEntry (id, attrNum, entryNum, value)
id as long

attrNum as integer

entryNum as integer

value as TYPE

253

in
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in

in
in
in
out

in
in
in
out

in
in

‘in

out

in
in
out

in
in

‘in

out

integer CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
dataType as integer < out
integer CDFgetAttrzEntryNumElements (id, attrNum, entryNum, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
numElems as integer ‘ out

integer CDFgetCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetChecksum (id, checksum)
id as long in
checksum as integer out

integer CDFgetCompression (id, compType, compParms, compPercent)
id as long in

compType as integer out
compParms as integer ‘ out
compPercent as integer ¢ out

integer CDFgetCompressionCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetCompressionInfo (cdfName, compType, compParms, compSize, uncompSize)
cdfName as string in

compType as integer out
compParms as integer() ‘ out
compSize as long ‘ out
uncompSize as long ‘out

integer CDFgetCopyright (id, copyright)
id as long in
copyright as string out

integer CDFgetDataTypeSize (dataType, numBytes)

dataType as integer in
numBytes as integer out
integer CDFgetDecoding (id, decoding)

id as long in
decoding as integer out
integer CDFgetEncoding (id, encoding)

id as long in
encoding as integer out

integer CDFgetFileBackward ()

integer CDFgetFormat (id, format)

254

id as long in

format as integer ‘ out
integer CDFgetLibraryCopyright (copyright)

copyright as string < out
integer CDFgetLibraryVersion (version, release, increment, subIncrement)

version as integer ‘out
release as integer ‘ out
increment as integer ‘ out
sublncrement as string ‘ out

integer CDFgetLeapSecondLastUpdated (id, lastUpdated)
id as long in
lastUpdate as integer out

integer CDFgetMajority (id, majority)
id as long in
majority as integer out

integer CDFgetMaxWrittenRecNums (id, maxRecrVars, maxReczVars)

id as long in
maxRecrVars as integer out
maxReczVars as integer out

integer CDFgetName (id, name)
id as long in
name as string out

integer CDFgetNegtoPosfpOMode (id, negtoPosfp0)
id as long in

negtoPosfp0 as integer ‘ out
integer CDFgetNumAttrgEntries (id, attrNum, entries)

id as long “in
attrNum as integer “in
entries as integer ‘ out

integer CDFgetNumAttributes (id, numAttrs)
id as long in

numAttrs as integer < out
integer CDFgetNumAttrrEntries (id, attrNum, entries)

id as long “in
attrNum as integer “in
entries as integer ‘ out
integer CDFgetNumAttrzEntries (id, attrNum, entries)

id as long “in
attrNum as integer “in
entries as integer < out

integer CDFgetNumgAttributes (id, numAttrs)
id as long in
numAttrs as integer out

255

integer CDFgetNumrVars (id, numVars)
id as long in
numrVars as integer out

integer CDFgetNumvAttributes (id, numAttrs)
id as long in
numAttrs as integer out

integer CDFgetNumzVars (id, numVars)
id as long in
numzVars as integer out

integer CDFgetReadOnlyMode (id, mode)
id as long in

mode as integer ‘ out
integer CDFgetrVarAllocRecords (id, varNum, allocRecs)

id as long “in
varNum as integer ‘in
allocRecs as integer < out
integer CDFgetrVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer ‘out
integer CDFgetrVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer ‘in
numBuffers as integer < out
integer CDFgetrVarCompression (id, varNum, cType, cParms, cPercent)

id as long “in
varNum as integer “in
compType as integer ‘ out
cParms as integer() ‘ out
cPercent as integer ‘ out
integer CDFgetrVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
indices as integer() “in
value as TYPE ‘ out
integer CDFgetrVarDataType (id, varNum, dataType)

id as long “in
varNum as integer “in
dataType as integer < out
integer CDFgetrVarsDimSizes (id, varNum, dimSizes)

id as long “in
varNum as integer ‘in
dimSizes as integer() ‘out

integer CDFgetrVarDimVariances (id, varNum, dimVarys)

256

id as long in
varNum as integer in

dimVarys as integer() < out
integer CDFgetrVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)

id as long “in
varNum as integer ‘in
dataType as integer < out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘out
integer CDFgetrVarMaxAllocRecNum (id, varNum, maxRec)

id as long “in
varNum as integer ‘in
maxRec as integer ‘out
integer CDFgetrVarMaxWrittenRecNum (id, varNum, maxRec)

id as long “in
varNum as integer ‘in
maxRec as integer ‘ out
integer CDFgetrVarName (id, varNum, varName)

id as long “in
varNum as integer “in
varName as string ‘ out
integer CDFgetrVarsNumDims (id, varNum, numDims)

id as long “in
varNum as integer ‘in
numDims as integer ‘out
integer CDFgetrVarNumElements (id, varNum, numElems)

id as long “in
varNum as integer “in
numElems as integer ‘ out
integer CDFgetrVarNumRecsWritten (id, varNum, numRecs)

id as long “in
varNum as integer ‘in
numRecs as integer ¢ out
integer CDFgetrVarPadValue (id, varNum, padValue)

id as long “in
varNum as integer “in
padValue as TYPE ‘ out
integer CDFgetrVarRecordData (id, varNum, recNum, buffer)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
buffer as TYPE ‘ out
integer CDFgetrVarRecVariance (id, varNum, recVary)

id as long “in
varNum as integer “in

257

recVary as integer ‘ out
integer CDFgetrVarReservePercent (id, varNum, percent)

id as long “in
varNum as integer ‘in
percent as integer ‘ out

integer CDFgetrVarsDimSizes (id, dimSizes)
id as long in

dimSizes as integer() ‘out
integer CDFgetrVarSeqData (id, varNum, value)

id as long “in
varNum as integer “in
value as TYPE ‘ out
integer CDFgetrVarSeqPos (id, varNum, recNum, indices)

id as long “in
varNum as integer ‘in
recNum as integer ‘out
indices as integer() ‘ out

integer CDFgetrVarsMaxWrittenRecNum (id, recNum)
id as long in
recNum as integer out

integer CDFgetrVarsNumDims (id, numDims)
id as long in

numDims as integer ‘out
integer CDFgetrVarSparseRecords (id, varNum, sRecords)

id as long “in
varNum as integer “in
sRecords as integer ‘ out

integer CDFgetStageCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetStatusText (status, text)
status as integer in

text as string ‘out
integer CDFgetValidate ()

integer CDFgetVarNum (id, varName)

id as long “in
varName as string ‘in

integer CDFgetVersion (id, version, release, increment)
id as long in

version as integer ‘out
release as integer < out
increment as integer ‘ out

integer CDFgetzMode (id, zMode)

258

id as long in

zMode as integer ‘ out
integer CDFgetzVarAllocRecords (id, varNum, allocRecs)

id as long “in
varNum as integer ‘in
allocRecs as integer < out
integer CDFgetzVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer ¢ out
integer CDFgetzVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer ‘in
numBuffers as integer < out
integer CDFgetzVarCompression (id, varNum, cType, cParms, cPercent)

id as long “in
varNum as integer “in
compType as integer ‘ out
cParms as integer() ‘ out
cPercent as integer ‘out
integer CDFgetzVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
indices as integer() “in
value as TYPE ‘ out
integer CDFgetzVarDataType (id, varNum, dataType)

id as long “in
varNum as integer “in
dataType as integer ‘ out
integer CDFgetzVarDimSizes (id, varNum, dimSizes)

id as long “in
varNum as integer ‘in
dimSizes as integer() ‘out
integer CDFgetzVarDimVariances (id, varNum, dimVarys)

id as long “in
varNum as integer “in
dimVarys as integer() ‘ out
integer CDFgetzVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)

id as long “in
varNum as integer ‘in
dataType as integer < out
numElems as integer < out
numDims as integer ‘out
dimSizes as integer() ‘out

integer CDFgetzVarMaxAllocRecNum (id, varNum, maxRec)

259

id as long
varNum as integer
maxRec as integer

integer CDFgetzVarMaxWrittenRecNum (id, varNum, maxRec)
id as long

varNum as integer

maxRec as integer

integer CDFgetzVarName (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFgetzVarNumDims (id, varNum, numDims)
id as long

varNum as integer

numDims as integer

integer CDFgetzVarNumElements (id, varNum, numElems)
id as long

varNum as integer

numElems as integer

integer CDFgetzVarNumRecsWritten (id, varNum, numRecs)
id as long

varNum as integer

numRecs as integer

integer CDFgetzVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFgetzVarRecordData (id, varNum, recNum, data)
id as long

varNum as integer

recNum as integer

data as TYPE

integer CDFgetzVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFgetzVarReservePercent (id, varNum, percent)
id as long

varNum as integer

percent as integer

integer CDFgetzVarSeqData (id, varNum, value)
id as long

varNum as integer

value as TYPE

integer CDFgetzVarSeqPos (id, varNum, recNum, indices)

260

in
in
out

in
in
out

in

‘in

out

in

‘in

out

in

‘in

out

in
in
out

in
in
out

in
in
in
out

in

‘in

out

in

‘in

out

in

‘in

out

id as long in
varNum as integer in
recNum as integer out
indices as integer() out

integer CDFgetzVarsMaxWrittenRecNum (id, recNum)
id as long in

recNum as integer ‘out
integer CDFgetzVarSparseRecords (id, varNum, sRecords)

id as long “in
varNum as integer “in
sRecords as integer ‘ out

integer CDFhyperGetrVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer ‘in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFhyperPutrVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer ‘in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE “in

integer CDFhyperPutzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)

id as long “in
varNum as integer ‘in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() “in
intervals as integer() “in

261

data as TYPE ‘in

integer CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)

id as long in

numDims as integer < out
dimSizes as integer() ‘out
encoding as integer ‘out
majority as integer < out
maxRec as integer ‘ out
numVars as integer ‘ out
numAttrs as integer ‘ out
integer CDFinquireAttr (id, attrNum, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)

id as long “in
attrNum as integer “in
attrName as string < out
attrScope as integer ‘out
maxgEntry as integer < out
maxrEntry as integer ‘ out
maxzEntry as integer < out
integer CDFinquireAttrgEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer < out
numElems as integer < out
integer CDFinquireAttrrEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out
integer CDFinquireAttrzEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
dataType as integer < out
numElems as integer < out

integer CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxrRec, numrVars, maxzRec,
numzVars, numAttrs)
id as long “in

3

numDims as integer out
dimSizes as integer () ‘ out
encoding as integer ‘ out
majority as integer < out
maxrRec as integer ‘ out
numrVars as integer ‘ out
maxzRec as integer ‘out
numzVars as integer ‘ out
numAttrs as integer ‘ out

integer CDFinquirerVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)

262

id as long in
varNum as integer in

varName as string ‘ out
dataType as integer < out
numElems as integer < out
numDims as integer ‘out
dimSizes as integer() ‘out
recVary as integer ‘ out
dimVarys as integer() ‘ out

integer CDFinquirezVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)

id as long in
varNum as integer “in
varName as string ‘ out
dataType as integer < out
numElems as integer < out
numDims as integer ‘out
dimSizes as integer() ‘out
recVary as integer ‘¢ out
dimVarys as integer() ‘out
integer CDFopen (CDFname, id)

CDFname as string “in
id as long ‘ out
integer CDFopenCDF (CDFname, id)

CDFname as string “in
id as long ‘out
integer CDFselectCDF (id)

id as long “in
integer CDFputAttrgEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
value as string “in
integer CDFputAttrgEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
dataType as integer “in
numElems as integer “in
value as TYPE “in
integer CDFputAttrrEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
value as string “in
integer CDFputAttrrEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long “in
attrNum as integer “in
entryNum as integer “in

263

dataType as integer in
numElems as integer in
value as TYPE ‘“in

integer CDFputAttrzEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
value as string “in

integer CDFputAttrzEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘in
numElems as integer ‘in
value as TYPE

integer CDFputrVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() ‘in
value as TYPE “in

integer CDFputrVarPadValue (id, varNum, padValue)

id as long “in
varNum as integer ‘in
padValue as TYPE “in
integer CDFputrVarRecordData (id, varNum, recNum, values)

id as long “in
varNum as integer “in
recNum as integer ‘in
values as TYPE “in

integer CDFputrVarSeqData (id, varNum, value)

id as long “in
varNum as integer ‘in
value as TYPE “in

integer CDFputzVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() ‘in
value as TYPE “in

integer CDFputzVarPadValue (id, varNum, padValue)

id as long “in
varNum as integer ‘in
padValue as TYPE “in
integer CDFputzVarRecordData (id, varNum, recNum, values)

id as long “in
varNum as integer “in

264

recNum as integer in
values as TYPE “in

integer CDFputzVarSeqData (id, varNum, value)

id as long “in
varNum as integer ‘in
value as TYPE “in

Dictionary(Of string, object) ReadCDF (id)

id as long “in
Dictionary(Of string, object) ReadCDF (id, encoding)

id as long “in
encoding as bool “in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varall, noentry)

id as long “in
encoding as bool “in
basic as bool “in
globals as bool ‘in
varall as bool “in
noentry as bool “in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varinfo, varmeta, vardata, noentry)

id as long ‘in
encoding as bool “in
basic as bool ‘in
globals as bool ‘in
varinfo as bool “in
varmeta as bool “in
vardata as bool ‘in
noentry as bool “in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varinfo, varmeta, vardata, noentry, head)

id as long ‘in
encoding as bool “in
basic as bool ‘in
globals as bool ‘in
varinfo as bool ‘in
varmeta as bool “in
vardata as bool “1in
noentry as bool “in
head as bool ‘in

Dictionary(Of string, object) ReadCDFInfo (id)
id as long in

Dictionary(Of string, object) ReadCDFGlobalAttributes (id)
id as long in

Dictionary(Of string, object) ReadCDFGlobalAttributes (id, encoding)

id as long in
encoding as bool in

Dictionary(Of string, object) ReadCDFNoEntryAttributes (id)
id as long in

265

Dictionary(Of string, object) ReadCDFVariable (id, varid)
id as long in
varid as integer in

Dictionary(Of string, object) ReadCDF Variable (id, varid, encoding, basic, varmeta, vardata)

id as long “in
varid as integer ‘in
encoding as bool “in
basic as bool ‘in
varmeta as bool ‘in
vardata as bool ‘in

object ReadCDFVariableData (id, varid)
id as long in
varid as integer ‘in

Dictionary(Of string, object) ReadCDF Variables (id)

id as long “in
Dictionary(Of string, object) ReadCDF Variables (id, encoding)

id as long “in
encoding as bool “in

Dictionary(Of string, object) ReadCDF VariablesData (id)
id as long in

Dictionary(Of string, object) ReadCDFVariablesData (id, encoding)
id as long in
encoding as bool in

Dictionary(Of string, object) ReadCDF VariablesMetaData (id)
id as long in

Dictionary(Of string, object) ReadCDF VariablesMetaData (id, encoding)
id as long in
encoding as bool in

Dictionary(Of string, object) ReadCDF VariablesSpec (id)
id as long in

Dictionary(Of string, object) ReadCDF VariablesSpec (id, encoding)
id as long in

encoding as bool in

integer CDFrenameAttr (id, attrNum, attrName)

id as long “in
attrNum as integer “in
attrName as string “in

integer CDFrenamerVar (id, varNum, varName)

id as long “in
varNum as integer ‘in
varName as string ‘in

integer CDFrenamezVar (id, varNum, varName)
id as long in
varNum as integer “in

266

varName as string in

integer CDFselect (id)
id as long in

integer CDFselectCDF (id)
id as long in

integer CDFsetAttrgEntryDataSpec (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer “in

integer CDFsetAttrrEntryDataSpec (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
dataType as integer ‘in

integer CDFsetAttrScope (id, attrNum, scope)

id as long “in
attrNum as integer “in
scope as integer “in

integer CDFsetAttrzEntryDataSpec (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer “in
entryNum as integer ‘in
dataType as integer ‘in

integer CDFsetCacheSize (id, numBuffers)
id as long in
numBuffers as integer in

integer CDFsetChecksum (id, checksum)
id as long in

checksum as integer in

integer CDFsetCompression (id, compressionType, compressionParms)

id as long “in
compressionType as integer ‘in
compressionParms as integer() ‘in

integer CDFsetCompressionCacheSize (id, numBuffers)
id as long in
numBuffers as integer “in

integer CDFsetDecoding (id, decoding)
id as long in
decoding as integer in

integer CDFsetEncoding (id, encoding)

id as long in
encoding as integer ‘in

267

void CDFsetFileBackward (mode)
mode as integer in

integer CDFsetFormat (id, format)
id as long in
format as integer in

integer CDFsetLeapSecondLastUpdated (id, lastUpdated)
id as long in
lastUpdated as integer in

integer CDFsetMajority (id, majority)
id as long in

majority as integer in

integer CDFsetNegtoPosfpOMode (id, negtoPosfp0)

id as long “in
negtoPosfp0 as integer ‘in
integer CDFsetReadOnlyMode (id, readOnly)

id as long “in
readOnly as integer ‘in

integer CDFsetrVarAllocBlockRecords (id, varNum, firstRec, lastRec)

id as long “in
varNum as integer “in
firstRec as integer ‘in
lastRec as integer ‘in

integer CDFsetrVarAllocRecords (id, varNum, numRecs)

id as long “in
varNum as integer ‘in
numRecs as integer “in

integer CDFsetrVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer ‘“in

integer CDFsetrVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer ‘in
numBuffers as integer ‘in

integer CDFsetrVarCompression (id, varNum, compressionType, compressionParms)

id as long “in
varNum as integer “in
compressionType as integer ‘in
compressionParms as integer() ‘in

integer CDFsetrVarDataSpec (id, varNum, dataType)

id as long “in
varNum as integer ‘in
dataType as integer ‘in

integer CDFsetrVarDimVariances (id, varNum, dimVarys)
id as long in

268

varNum as integer
dimVarys as integer()

integer CDFsetrVarlnitialRecs (id, varNum, initialRecs)
id as long

varNum as integer

initialRecs as integer

integer CDFsetrVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFsetrVarReservePercent (id, varNum, reservePercent)
id as long

varNum as integer

reservePercent as integer

integer CDFsetrVarsCacheSize (id, numBuffers)

id as long

numBuffers as integer

integer CDFsetrVarSeqPos (id, varNum, recNum, indices)
id as long

varNum as integer

recNum as integer

indices as integer()

integer CDFsetrVarSparseRecords (id, varNum, sRecords)
id as long

varNum as integer

sRecords as integer

integer CDFsetStageCacheSize (id, numBuffers)
id as long
numBuffers as integer

void CDFsetValidate (mode)
mode as integer

integer CDFsetzMode (id, zMode)
id as long
zMode as integer

integer CDFsetzVarAllocBlockRecords (id, varNum, firstRec, lastRec)
id as long

varNum as integer

firstRec as integer

lastRec as integer

integer CDFsetzVarAllocRecords (id, varNum, numRecs)
id as long

varNum as integer

numRecs as integer

integer CDFsetzVarBlockingFactor (id, varNum, bf)
id as long

269

in
in

in
in
in

in

‘in

in

in

‘in

in

in

‘in

in

‘in

in
in

in
in
in

in
in

in

in
in

in

‘in
‘in

in

in

‘in

in

in

varNum as integer
bf as integer

integer CDFsetzVarCacheSize (id, varNum, numBuffers)

id as long
varNum as integer
numBuffers as integer

integer CDFsetzVarCompression (id, varNum, compressionType, compressionParms)

id as long

varNum as integer
compressionType as integer
compressionParms as integer()

integer CDFsetzVarDataSpec (id, varNum, dataType)
id as long

varNum as integer

dataType as integer

integer CDFsetzVarDimVariances (id, varNum, dimVarys)

id as long
varNum as integer
dimVarys as integer()

integer CDFsetzVarInitialRecs (id, varNum, initialRecs)

id as long
varNum as integer
initialRecs as integer

integer CDFsetzVarRecVariance (id, varNum, recVary)

id as long
varNum as integer
recVary as integer

integer CDFsetzVarReservePercent (id, varNum, reservePercent)

id as long
varNum as integer
reservePercent as integer

integer CDFsetzVarsCacheSize (id, numBuffers)
id as long
numBuffers as integer

integer CDFsetzVarSeqPos (id, varNum, recNum, indices)

id as long

varNum as integer
recNum as integer
indices as integer()

integer CDFsetzVarSparseRecords (id, varNum, sRecords)

id as long
varNum as integer
sRecords as integer

integer CDFvarClose (id, varNum)
id as long
varNum as integer

270

in
in

in
in
in

in
in
in
in

in
in
in

in
in
in

in
in
in

in
in
in

in
in
in

in
in

in
in
in
in

in
in
in

in

‘in

integer CDFvarCreate (id, varName, dataType, numElements, recVariance, dimVariances, varNum)

id as long “in
varName as string ‘in
dataType as integer ‘in
numElements as integer ‘in
recVariance as integer ‘in
dimVariances as integer() “in
varNum as integer ‘ out
integer CDFvarGet (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer ‘in
indices as integer() ‘in
value as TYPE ‘ out

integer CDFvarHyperGet (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer ‘in
recStart as integer ‘in
recCount as integer “in
recInterval as integer ‘“in
indices as integer() ‘in
counts as integer() ‘in
intervals as integer() ‘in
buffer as TYPE ‘ out

integer CDFvarHyperPut (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer ‘in
recStart as integer ‘in
recCount as integer “in
recnterval as integer ‘“in
indices as integer() ‘in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE ‘“in

integer CDFvarInquire (id, varNum, varName, dataType, numElements, recVariance, dimVariances)

id as long “in
varNum as integer ‘in
varName as string ‘ out
dataType as integer ‘ out
numElements as integer ‘ out
recVariance as integer ‘ out
dimVariances as integer() ‘ out
integer CDFvarNum (id, varName)

id as long “in
varName as string ‘in
integer CDFvarPut (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer ‘in

271

indices as integer()
value as TYPE

integer CDFvarRename (id, varNum, varName)
id as long

varNum as integer

varName as string

272

in
in

in
in
in

B.2 EPOCH Utility Methods

double computeEPOCH (year, month, day, hour, minute, second, msec)

year as integer “in
month as integer “in
day as integer “in
hour as integer “in
minute as integer ‘in
second as integer ‘in
msec as integer “in

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)
epoch as double in

year as integer out
month as integer ¢ out
day as integer ¢ out
hour as integer ¢ out
minute as integer ¢ out
second as integer ¢ out
msec as integer ¢ out
string toEncodeEPOCH (epoch)

epoch as double “in
string toEncodeEPOCH (epoch, style)

epoch as double “in
style as integer ¢ in
string() toEncodeEPOCH (epoch)

epoch as double() “in
string() toEncodeEPOCH (epoch, style)

epoch as double() “in
style as integer “in

void encodeEPOCH (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH1 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH2 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH3 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH4 (epoch, epString)

epoch as double in
epString as string out

273

void encodeEPOCHx (epoch, format, epString)

epoch as double ‘in
format as string ‘in
epString as string ¢ out
double toParseEPOCH (epString)

epString as string ‘in
double() toParseEPOCH (epString)

epString as string() ‘in
double parseEPOCH (epString)

epString as string ‘in
double parseEPOCHI1 (epString)

epString as string ‘in
double parseEPOCH2 (epString)

epString as string ‘in
double parseEPOCH3 (epString)

epString as string ‘in
double parseEPOCH4 (epString)

epString as string ‘in

double computeEPOCHI16 (year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

year as integer ‘in
month as integer ‘in
day as integer “in
hour as integer ‘in
minute as integer “in
second as integer ‘in
msec as integer “in
microsec as integer “in
nanosec as integer “in
picosec as integer “in
epoch as double() ‘out

void EPOCH16breakdown (epoch, year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

3

epoch as double() in

year as integer ¢ out
month as integer ¢ out
day as integer ¢ out
hour as integer ¢ out
minute as integer ¢ out
second as integer ¢ out
msec as integer ‘ out
microsec as integer ¢ out
nanosec as integer ¢ out
picosec as integer ¢ out
string toEncodeEPOCH16 (epoch)

epoch as double() “in

string toEncodeEPOCH16 (epoch, style)

274

epoch as double()
style as integer

void encodeEPOCH16 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 1 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 2 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 3 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 4 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCHI16 x (epoch, format, epString)
epoch as double()

format as string

epString as string

double() toParseEPOCH16 (epString)
epString as string

double parseEPOCH16 (epString, epoch)
epString as string
epoch as double()

double parseEPOCH16 1 (epString)
epString as string
epoch as double()

double parseEPOCH16 2 (epString)
epString as string
epoch as double()

double parseEPOCH16 3 (epString)
epString as string
epoch as double()

double parseEPOCH16 4 (epString)
epString as string
epoch as double()

long computeTT2000 (year, month, day)
year as double

month as double

day as double

275

in
in

in
out

in
out

in
out

in
out

in
out

in

out

in

in
out

in
out

in
out

‘in

out

‘in

out

‘in
‘in
‘in

long computeTT2000 (year, month, day, hour)
year as double

month as double

day as double

hour as double

long computeTT2000 (year, month, day, hour, minute)
year as double

month as double

day as double

hour as double

minute as double

long computeTT2000 (year, month, day, hour, minute, second)

year as double
month as double
day as double
hour as double
minute as double
second as double

long computeTT2000 (year, month, day, hour, minute, second, msec)

year as double
month as double
day as double
hour as double
minute as double
second as double
msec as double

long computeTT2000 (year, month, day, hour, minute, second, msec, usec)

year as double
month as double
day as double
hour as double
minute as double
second as double
msec as double
usec as double

long computeTT2000 (year, month, day, hour, minute, second, msec, usec, nsec)

year as double
month as double
day as double
hour as double
minute as double
second as double
msec as double
usec as double
nsec as double

void TT2000breakdown (epoch, year, month, day, hour, minute, second, msec, usec, nsec)

epoch as long
year as double
month as double
day as double

276

in
in
in
in

in

‘in
‘in

in

‘in

‘in
‘in
‘in

in

‘in
‘in

‘in
‘in
‘in

in
in
in
in

in
in
in
in
in
in
in
in

in

‘in
‘in

in

‘in
‘in

in
in
in

in

out
out
out

hour as double out
minute as double ¢ out
second as double ¢ out
msec as double ¢ out
usec as double ¢ out
nsec as double ¢ out
string toEncodeTT2000 (epoch)

epoch as long ‘in
string toEncodeTT2000 (epoch, style)

epoch as long ‘in
style as integer ¢ in
string() toEncodeTT2000 (epoch)

epoch as long() “in
string() toEncodeTT2000 (epoch, style)

epoch as long() “in
style as integer “in
void encodeTT2000 (epoch, epString, style)

epoch as long ‘in
epString as string ¢ out
style as string “in
long toParseTT2000 (epString)

epString as string ‘in
long() toParseTT2000 (epString)

epString as string() ‘in
long parseTT2000 (epString)

epString as string ‘in
void CDFgetLastDateinLeapSecondsTable (year, month, day)

year as integer ‘ out
month as integer ‘out
day as integer ‘out
double EPOCHtoUnixTime (epoch)

epoch as double ‘in
double() EPOCHtoUnixTime (epoch)

epoch as double() ‘in
double UnixTimetoEPOCH (unixTime)

unixTime as double “in
double() UnixTimetoEPOCH (unixTime)

unixTime as double() “in
double EPOCHI6toUnixTime (epoch)

epoch as double() ‘in

double() UnixTimetoEPOCH16 (unixTime)

277

unixTime as double ‘in

double TT2000toUnixTime (epoch)
epoch as long “in

double() TT2000toUnixTime (epoch)
epoch as long() ‘in

long UnixTimetoTT2000 (unixTime)
unixTime as double ‘“in

long() UnixTimetoTT2000 (unixTime)
unixTime as double() “in

278

B.3 CDF Utility Methods

boolean CDFFileExists (fileName)
filename as string

integer CDFgetChecksumValue(checksum)
fileName as string

integer CDFgetCompressionTypeValue(compressionType)
compressionType as string

integer CDFgetDataTypeValue(dataType)
dataType as string

integer CDFgetDecodingValue(decoding)
decoding as string

integer CDFgetEncodingValue(encoding)
encoding as string

integer CDFgetFormatValue(format)
format as string

integer CDFgetMajorityValue(majority)
majority as string

integer CDFgetSparseRecordValue(sparseRecord)
sparseRecord as string

string CDFgetStringChecksum(checksum)
checksum as integer

string CDFgetStringCompressionType(compressionType)
compressionType as integer

string CDFgetStringDataType(dataType)
dataType as integer

string CDFgetStringDecoding(decoding)
decoding as integer

string CDFgetStringEncoding(encoding)
encoding as integer

string CDFgetStringFormat(format)
format as integer

string CDFgetStringMajority(majority)
majority as integer

string CDFgetStringSparseRecord(sparseRecord)
sparseRecord as integer

279

in

in

in

in

in

in

in

in

‘in

in

‘in

in

in

in

in

in

in

B.4 CDF Exception Methods

integer CDFgetCurrentStatus ()

string CDFgetStatusMsg(status)
status as integer

280

Index

ALPHAOSF1_DECODING
ALPHAOSF1_ENCODING
ALPHAVMSd_DECODING
ALPHAVMSd ENCODING
ALPHAVMSg DECODING
ALPHAVMSg ENCODING
ALPHAVMSi_DECODING
ALPHAVMSi_ENCODING
ARM_BIG_DECODING
ARM_BIG_ENCODING
ARM_LITTLE_DECODING
ARM_LITTLE_ENCODING
attribute

inquiring

number

inquiring

renaming
attributes

checking existence

16
15
16
15
16
15
16
15
17
16
17
16

165

166
168

169

creation 162, 172,204, 207, 208, 209, 211, 212, 213, 214,

215,217
entries
global entry
checking existence
inquiring
reading
writing
naming
inquiring
number of
inquiring
scopes
constants
GLOBAL_SCOPE
VARIABLE_SCOPE
inquiring
Attributes
entries
global entry
deleting
reading
Attributes
deleting
entries
rVariable entry
checking existence
zVariable entry
checking existence
Attributes
entries
rVariable entry
deleting
Attributes
entries
zVariable entry
deleting
Attributes

169

163

164

167
20,162,172
165

51

19

19

19
165, 192

173
175

173

170

171

174

175

281

entries
global entry
data type
inquiring
Attributes
entries
global entry
number of elements
inquiring
Attributes
entries
global entry
last entry number
inquiring
Attributes
entries
rVariable entry
last entry number
inquiring
Attributes
entries
zVariable entry
last entry number
inquiring
Attributes
name
inquiring
Attributes
number
inquiring
Attributes
entries
rVariable entry
reading
Attributes
entries
global entry
data type
inquiring
Attributes
entries
global entry
number of elements
inquiring
Attributes
scope
inquiring
Attributes
entries
zVariable entry
reading
Attributes
entries
zVariable entry
data type
inquiring
Attributes

176

177

178

179

179

180

181

182

183

183

184

185

186

entries
zVariable entry

number of elements

inquiring
Attributes
entries
global entries
number of
inquiring
Attributes
number of
inquiring
Attributes
entries
rEntries
number of
inquiring
Attributes
entries
zEntries
number of
inquiring
Attributes
inquiring
Attributes
entries
global entry
inquiring
Attributes
entries
rVariable entry
inquiring
Attributes
entries
zVariable entry
inquiring
Attributes
entries
global entry
writing
Attributes
entries
rVariable entry
writing
Attributes
entries
zVariable entry
writing
Attributes
renaming
Attributes
entries
global entry
data specification
resetting
Attributes
entries
rVariable entry
data specification
resetting
Attributes
scope

187

188

188

189

190

192

193

194

195

196

197

199

200

200

201

282

resetting

Attributes

entries
zVariable entry
data specification
resetting

CDF

backward file
backward file flag
getting
setting
cache size
compression
resetting
Checksum
closing
Copyright
inquiring
creation
deleting
exception methods
Long Integer
opening
selecting
set
majority
utility methods
Validation

CDF getNegtoPosfpOMode
CDF library

copy right notice
max length
modes
-0.0t0 0.0
constants
NEGtoPOSfpOoff
NEGtoPOSfpOon
decoding
constants
ALPHAOSF1_DECODING
ALPHAVMSd DECODING
ALPHAVMSg DECODING
ALPHAVMSi DECODING
DECSTATION_DECODING
HOST_DECODING
HP_DECODING
IBMPC_DECODING
IBMRS_DECODING
MAC_DECODING
NETWORK_DECODING
NeXT_DECODING
SGi_DECODING
SUN_DECODING
VAX_DECODING
MegToPosFpOMode
selecting
read-only
constants
READONLYoff
READONLYon
selecting
zMode

202

203
20

21
20

59
21
32

42
34

36
237
23
53,54
55,56

62
233
22
47

20

20
20

16
16
16
16
17
16
17
17
17
17
16
17
17
16
16

20
19

19
19

constants
zMODEoff
zZMODEon1
zMODEon2
selecting
CDF setNegtoPosfpOMode
CDF_ATTR_NAME_ LEN256
CDF_BYTE
CDF_CHAR
CDF_COPYRIGHT_LEN
CDF_DOUBLE
CDF_EPOCH
CDF_EPOCH16
CDF_FLOAT
CDF_INT1
CDF_INT2
CDF_INT4
CDF_INTS
CDF_MAX_ DIMS
CDF_MAX_PARMS
CDF_OK
CDF_PATHNAME_LEN
CDF_REAL4
CDF_REALS
CDF_STATUSTEXT LEN
CDF_TIME_TT2000
CDF_UCHAR
CDF_UINT1
CDF_UINT2
CDF_UINT4
CDF_VAR_NAME LEN256
CDF_WARN

20
20
20
20
63
20
14
14
20
14
14
14
14
14
14
14
14
20
20
13
20
14
14
20
14
14
14
14
14
20
13

CDFattrCreate 162, 204, 207, 208, 209, 211, 212, 213, 214,

215,217
CDFattrEntryInquire
CDFattrGet
CDFattrInquire
CDFattrNum
CDFattrPut
CDFattrRename
CDFclose
CDFcloseCDF
CDFcloserVar
CDFclosezVar
CDFconfirmAttrExistence
CDFconfirmgEntryExistence
CDFconfirmrEntryExistence
CDFconfirmrVarExistence
CDFconfirmrVarPadValueExistence
CDFconfirmzEntryExistence
CDFconfirmzVarExistence
CDFconfirmzVarPadValueExistence
CDFcreate
CDFcreateAttr
CDFcreateCDF
CDFcreaterVar
CDFcreatezVar
CDFdelete
CDFdeleteAttr
CDFdeleteAttrgEntry
CDFdeleteAttrrEntry
CDFdeleteAttrzEntry

163
164
165
166
167
168
32
33
66
67
169
169
170
68
68
171
69
70
34
172
35
71
72
36
173
173
174
175

CDFdeleteCDF
CDFdeleterVar
CDFdeleterVarRecords
CDFdeletezVar
CDFdeletezVarRecords
CDFdoc
CDFerror
CDFerror
CDFException

CDFgetCurrentStatus

CDFgetStatusMsg

utility methods

CDFgetCurrentStatus
CDFgetStatusMsg

CDFFileExists
CDFgetAttrgEntry
CDFgetAttrgEntryDataType
CDFgetAttrMaxrEntry
CDFgetAttrMaxzEntry
CDFgetAttrName
CDFgetAttrNum
CDFgetAttrrEntry
CDFgetAttrrEntryDataType
CDFgetAttrrEntryNumElements
CDFgetAttrScope
CDFgetAttrzEntry
CDFgetAttrzEntryDataType
CDFgetAttrzEntryNumElements
CDFgetCacheSize
CDFgetChecksumValue
CDFgetCkecksum
CDFgetCompression
CDFgetCompressionCacheSize
CDFgetCompressionInfo
CDFgetCompressionTypeValue
CDFgetCopyright
CDFgetCurrentStatus
CDFgetDataTypeSize
CDFgetDataTypeValue
CDFgetDecoding
CDFgetDecodingValue
CDFgetEncoding
CDFgetEncodingValue
CDFgetFileBackward
CDFgetFormat
CDFgetFormatValue
CDFgetLastDateinLeapSecondsTable
CDFgetLibraryCopyright
CDFgetLibraryVersion
CDFgetMajority
CDFgetMajorityValue
CDFgetMaxWrittenRecNums
CDFgetName
CDFgetNumAttrgEntries
CDFgetNumAttributes
CDFgetNumAttrrEntries
CDFgetNumAttrzEntries
CDFgetNumgAttributes
CDFgetNumrVars
CDFgetNumvAttributes
CDFgetNumzVars
CDFgetReadOnlyMode

36
73
74,75

76,77
37
239
38

237
237

237
237
233
175
176
179
179
180
181
182
183
183
184
185
186
187

38
233
39
40
41
41
233
4
237
30
233
43
234
43
234
44

44, 45
235
232

30
31
46
235
78
46
188
188
189
190
190
79
191
80
48

CDFgetrVarAllocRecords
CDFgetrVarBlockingFactor
CDFgetrVarCacheSize
CDFgetrVarCompression
CDFgetrVarData
CDFgetrVarDataType
CDFgetrVarDimVariances
CDFgetrVarlnfo
CDFgetrVarMaxAllocRecNum
CDFgetrVarMaxWrittenRecNum
CDFgetrVarName
CDFgetrVarNumElements
CDFgetrVarNumRecsWritten
CDFgetrVarPadValue
CDFgetrVarRecordData
CDFgetrVarRecVariance
CDFgetrVarReservePercent
CDFgetrVarsDimSizes
CDFgetrVarSeqData
CDFgetrVarSeqPos
CDFgetrVarsMaxWrittenRecNum
CDFgetrVarsNumDims
CDFgetrVarSparseRecords
CDFgetSparseRecordValue
CDFgetStageCacheSize
CDFgetStatusMsg
CDFgetStatusText
CDFgetStringChecksum
CDFgetStringCompressionType
CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority
CDFgetStringSparseRecord
CDFgetValidae
CDFgetVarNum
CDFgetVersion

CDFgetzMode
CDFgetzVarAllocRecords
CDFgetzVarBlockingFactor
CDFgetzVarCacheSize
CDFgetzVarCompression
CDFgetzVarData
CDFgetzVarDataType
CDFgetzVarDimSizes
CDFgetzVarDimVariances
CDFgetzVarlnfo
CDFgetzVarMaxAllocRecNum
CDFgetzVarMaxWrittenRecNum
CDFgetzVarName
CDFgetzVarNumDims
CDFgetzVarNumElements
CDFgetzVarNumRecsWritten
CDFgetzVarPadValue
CDFgetzVarRecordData
CDFgetzVarRecVariance
CDFgetzVarReservePercent
CDFgetzVarSeqData
CDFgetzVarSeqPos
CDFgetzVarsMaxWrittenRecNum
CDFgetzVarSparseRecords

236,

80
81
82
82
83
84
85
86
87
87
88
89
89
90
91
92
92
93
93
94
95
96
96
235
48
237
31
235
236
236
236
236
236
236
237
49
97
49
50
98
99
100
100
101
102
103
104
104
105
106
106
107
108
108
109
110
111
111
112
113
114
115

284

CDFhyperGetrVarData
CDFhyperGetzVarData
CDFhyperPutrVarData
CDFhyperPutzVarData
CDFinquire
CDFinquireAttr
CDFinquireAttrgEntry
CDFinquireAttrrEntry
CDFinquireAttrzEntry
CDFinquireCDF
CDFinquirerVar
CDFinquirezVar
CDFopen
CDFopenCDF
CDFputAttrgEntry
CDFputAttrrEntry
CDFputAttrzEntry
CDFputrVarData
CDFputrVarPadValue
CDFputrVarRecordData
CDFputrVarSeqData
CDFputzVarData
CDFputzVarPadValue
CDFputzVarRecordData
CDFputzVarSeqData
CDFrenameAttr
CDFrenamerVar
CDFrenamezVar
CDFs
compression
inquiring
CDFs
browsing
cache size
inquiring
checksum
inquiring
closing
compression types/parameters
copy right notice
max length
reading
corrupted
creation
decoding
constants
ARM_BIG_DECODING

ARM_LITTLE_DECODING

[A64VMSd_DECODING
[A64VMSg_DECODING
[A64VMSi_DECODING
encoding
constants
ALPHAOSF1_ENCODING

ALPHAVMSd _ENCODING
ALPHAVMSg_ENCODING

ALPHAVMSi ENCODING
ARM _BIG_ENCODING

ARM _LITTLE ENCODING
DECSTATION_ENCODING

HOST_ENCODING
HP_ENCODING

115
117
118
120

51
192
193
194
195

52
122
123

53

54
196
197
199
124
125
126
127
128
129
130
130
200
131
132

40, 41
19
38

39
33
18

20
37
34,35
35

17
17
17
17
17

15
15
15
15
15
16
16
15
15
15

IA64VMSd_ENCODING
IA64VMSg_ENCODING
IA64VMSi_ENCODING
IBMPC_ENCODING
IBMRS_ENCODING
MAC_ENCODING
NETWORK_ENCODING
NeXT ENCODING
SGi_ENCODING
SUN_ENCODING
VAX _ENCODING
default
format
constants
MULTI_FILE
SINGLE FILE
default
naming
overwriting
version
inquiring
CDFs
cache size
compression
inquiring
CDFs
decoding
inquiring
CDFs
decoding
inquiring
CDFs
file backard
inquiring
CDFs
format
inquiring
CDFs
format
inquiring
CDFs
majority
inquiring
CDFs
name
inquiring
CDFs
-0.0 to 0.0 mode
inquiring
CDFs
read-only mode
inquiring
CDFs
cache size
stage
inquiring
CDFs
validation
inquiring
CDFs
version
inquiring

20, 34,
34,

16
16
16
15
15
16
15
16
15
15
15
15

14
13
13
35
35

37

41

43

43

44

44

45

46

46

47

48

48

49

49

285

CDFs
zMode
inquiring
CDFs
encoding
inquiring
CDFs
inquiring
CDFs
naming
CDFs
naming
CDFs
cache size
resetting
CDFs
checksum
resetting
CDFs
compression
resetting
CDFs
decoding
resetting
CDFs
encoding
resetting
CDFs
File Backward
resetting
CDFs
format
resetting
CDFs
format
resetting
CDFs
-0.0 to 0.0 Mode
resetting
CDFs
read-only mode
resetting
CDFs
cache size
stage
resetting
CDFs
validation
resetting
CDFs
zMode
resetting
CDFs
record numbers
maximum written
zVariables and rVariables
CDFs
rVariables
number of rVariables
inquiring
CDFs
zVariables

50

51

52

54

54

57

57

58

59

60

61

61

62

63

64

64

65

65

78

79

number of zVariables
inquiring
CDFs
global attributes
number of
inquiring
CDFs
variable attributes
number of
inquiring
CDFselect
CDFselectCDF
CDFsetAttrgEntryDataSpec
CDFsetAttrrEntryDataSpec
CDFsetAttrScope
CDFsetAttrzEntryDataSpec
CDFsetCacheSize
CDFsetChecksum
CDFsetCompression
CDFsetCompressionCacheSize
CDFsetDecoding
CDFsetEncoding
CDFsetFileBackward
CDFsetFormat
CDFsetMajority
CDFsetReadOnlyMode
CDFsetrVarAllocBlockRecords
CDFsetrVarAllocRecords
CDFsetrVarBlockingFactor
CDFsetrVarCacheSize
CDFsetrVarCompression
CDFsetrVarDataSpec
CDFsetrVarDimVariances
CDFsetrVarlnitialRecs
CDFsetrVarRecVariance
CDFsetrVarReservePercent
CDFsetrVarsCacheSize
CDFsetrVarSeqPos
CDFsetrVarSparseRecords
CDFsetStageCacheSize
CDFsetValidate
CDFsetzMode
CDFsetzVarAllocBlockRecords
CDFsetzVarAllocRecords
CDFsetzVarBlockingFactor
CDFsetzVarCacheSize
CDFsetzVarCompression
CDFsetzVarDataSpec
CDFsetzVarDimVariances
CDFsetzVarlnitialRecs
CDFsetzVarRecVariance
CDFsetzVarReservePercent
CDFsetzVarsCacheSize
CDFsetzVarSeqPos
CDFsetzVarSparseRecords
CDFUtils
CDFFileExists
CDFgetChecksumValue

CDFgetCompressionTypeValue

CDFgetDataTypeValue
CDFgetDecodingValue
CDFgetEncodingValue

80

190

191
55
56

200
201
202
203
57
57
58
59
59
60
61
61,62
62
64
133
134
134
135
136
137
137
138
139
140
140
141
142

64

65

65
142
143
144
145
145
146
147
148
148
149
150
151
151

233
233
233
233
234
234

286

CDFgetFormatValue
CDFgetMajorityValue
CDFgetSparseRecordValue
CDFgetStringChecksum

CDFgetStringCompressionType

CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority
CDFgetStringSparseRecord
utility methods
CDFFileExists
CDFgetChecksumValue

CDFgetCompressionTypeValue

CDFgetDataTypeValue
CDFgetDecodingValue
CDFgetEncodingValue
CDFgetFormatValue
CDFgetMajorityValue
CDFgetSparseRecordValue
CDFgetStringChecksum

CDFgetStringCompressionType

CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority

CDFgetStringSparseRecord

CDFvarClose
CDFvarCreate
CDFvarGet
CDFvarHyperGet
CDFvarHyperPut
CDFvarlnquire
CDFvarNum
CDFvarPut
CDFvarRename
Ckecksum
Classes
closing
rVar in a multi-file CDF
zVar in a multi-file CDF
COLUMN_MAJOR
compiling
Compiling
compression
types/parameters
computeEPOCH
computeEPOCH16
computeTT2000
Data type
size
inquiring
data types
constants
CDF BYTE
CDF_CHAR
CDF_DOUBLE
CDF_EPOCH
CDF_EPOCHI16
CDF_FLOAT

235
235
235
235
236
236
236
236
236
236
236,237

233
233
233
233
234
234
235
235
235
235
236
236
236
236
236
236
236, 237
152
153
154
155
156
157
159
160
161
39,57
11

66
67
17
11
11

18
220
224
229

30

14
14
14
14
14
14
14

CDF_INTI
CDF_INT2
CDF_INT4
CDF_INTS8
CDF_REAL4
CDF_REALS
CDF_TIME_TT2000
CDF_UCHAR
CDF_UINT1
CDF_UINT2
CDF_UINT4
DECSTATION_DECODING
DECSTATION_ENCODING
dimensions
limit
encodeEPOCH
encodeEPOCH]1
encodeEPOCH16
encodeEPOCH16_1
encodeEPOCHI16 2
encodeEPOCHI16 3
encodeEPOCHI16 4
encodeEPOCHI16_x
encodeEPOCH2
encodeEPOCH3
encodeEPOCH4
encodeEPOCHx
encodeTT2000
EPOCH
computing
decomposing
encoding
parsing
utility routines
computeEPOCH
computeEPOCH16
encodeEPOCH
encodeEPOCH1
encodeEPOCH16
encodeEPOCH16 1
encodeEPOCH16_2
encodeEPOCH16_3
encodeEPOCH16_4
encodeEPOCH16_x
encodeEPOCH2
encodeEPOCH3
encodeEPOCH4
encodeEPOCHx
EPOCH16breakdown
EPOCHbreakdown
parseEPOCH
parseEPOCH1
parseEPOCH16
parseEPOCH16 1
parseEPOCH16 2
parseEPOCH16 3
parseEPOCH16_4
parseEPOCH2
parseEPOCH3
parseEPOCH4
EPOCH]16breakdown
EPOCHbreakdown

221,224,

220,

220,
221,222, 224, 225, 226,
223,226,227

221, 224,

223,

227,

14
14
14
14
14
14
14
14
14
14
14
17
15

20
230
221
225
225
225
225
225
226
221
221
222
222
231

224
224
230
228
220
220
224
230
221
225
225
225
225
225
226
221
221
222
222
224
220
223
223
226
227
227
227
228
223
223
223
224
220

Equivalent data types
examples
CDF
-0.0 to 0.0 mode
set63
attribute
name
get
scope
get
checksum
set58
compression
get
compression cache size
set59
Copyright
get
decoding
get
encoding
set60
file backward
set61
global attribute
entry
data type
get
get
entry
number of elements
get
number of entries
get
inquiring
number of attributes
get
read-only mode
set64
rVariable attribute
entry
get
entry
data type
get
stage cache size
set65
validate
set65
validation
get
version
get
zMode
get
set66
CDF
cache size
get
checksum
get
close

26

180

185

40

42

43

177

176

178

188
53

189

182

183

49

50

50

39

39
33

create
delete
CDF
compression cache size
get
CDF
compression information
get
CDF
file backward
get
CDF
format
get
CDF
format
get
CDF
majority
get
CDF
name
get
CDF
-0.0 to 0.0 mode
get
CDF
read-only mode
get
CDF
cache buffer size
get
CDF
open
CDF
select
CDF
select
CDF
cache size
set57
CDF
compression
set58
CDF
decoding
set60
CDF
format
set61
CDF
format
set62
CDF
majority
set63
CDF
rVar
close
CDF
zVar
close

35
37

41

42

44

45

45

46

47

47

48

48

55

55

56

67

67

288

CDF
rVariable
existence
confirm
CDF
rVariable
pad value existence
confirm
CDF
zVariable
existence
confirm
CDF
zVariable
pad value existence
confirm
CDF
rVariable
create
CDF
zVariable
create
CDF
rVariable
delete
CDF
rVariable
data records
delete
CDF
rVariable
data records
delete
CDF
zVariable
delete
CDF
zVariable
data records
delete
CDF
zVariable
data records
delete
CDF
max record numbers

zVariables and rVariables

get
CDF
number of rVariables
get
CDF
number of zVariables
get
CDF
rVariable

number of records allocated

get
CDF
rVariable
blocking factor
get

68

69

69

70

71

73

74

75

75

76

77

78

79

79

80

81

81

CDF
rVariable
cache size
get
CDF
rVariable
compression
get
CDF
rVariable
variable data
get
CDF
rVariable
data type
get
CDF
rVariable
dimension variances
get
CDF
rVariable
information
get
CDF
rVariable
maximum number of records allocated
get
CDF
rVariable
maximum record number
get
CDF
rVariable
name
get
CDF
rVariable
number of elements
get
CDF
rVariable
number of records written
get
CDF
rVariable
pad value
get
CDF
rVariable
record data
get
CDF
rVariable
record variance
get
CDF
rVariable
compression reserve percentage
get
CDF
rVariable

82

83

84

85

85

86

87

88

88

89

90

90

91

92

93

289

dimension sizes
get
CDF
rVariable
data value
get
CDF
rVariable
read position
get
CDF
rVariables
maximum record number
get
CDF
rVariable
dimensionality
get
CDF
rVariable
sparse record type
get
CDF
Variable number
get
CDF
zVariable
number of records allocated
get
CDF
zVariable
blocking factor
get
CDF
zVariable
cache size
get
CDF
zVariable
compression
get
CDF
zVariable
variable data
get
CDF
zVariable
data type
get
CDF
zVariable
dimension sizes
get
CDF
zVariable
dimension variances
get
CDF
rVariable
information
get
CDF

93

94

95

96

96

97

98

98

99

100

101

102

103

103

104

105

zVariable

maximum number of records allocated
get

zVariable

maximum record number
get

zVariable

name
get

zVariable

dimensionality
get

zVariable

number of elements
get

zVariable

number of records written
get

zVariable

pad value
get

zVariable

record data
get

zVariable

record variance
get

zVariable

compression reserve percentage
get

zVariable

data value
get

zVariable

read position
get

zVariables

maximum record number
get

zVariable

sparse record type
get

rVariable

multiple values or records
get

zVariable

multiple values or records

105

106

107

107

108

109

110

110

111

112

113

114

114

115

116

290

get
CDF
rVariable
data values
write
CDF
zVariable
data values
write
CDF
rVariable
inquire
CDF
zVariable
inquire
CDF
rVariable
data value
write
CDF
rVariable
pad value
set126
CDF
rVariable
record data
write
CDF
rVariable
data value
sequential write
CDF
zVariable
data value
write
CDF
zVariable
pad value
set129
CDF
zVariable
record data
write
CDF
zVariable
data value
sequential write
CDF
zVariable
rename
CDF
zVariable
rename
CDF
rVariable
data records
block
allocate
CDF
rVariable
data records
sequential

118

119

121

122

124

125

127

127

128

130

131

132

133

133

allocate
CDF
rVariable
blocking factor
set135
CDF
rVariable
cache size
set135
CDF
rVariable
compression
set136
CDF
rVariable
data type
set137
CDF
rVariable
dimension variances
set138
CDF
rVariable
number of initial records
set138
CDF
rVariable
record variance
set139
CDF
rVariable
compression reserve percentage
set140
CDF
rVariable
cache size
set141
CDF
rVariable
sequential location
setl41
CDF
rVariable
sparse record flag
set142
CDF
zVariable
data records
block
allocate
CDF
zVariable
data records
sequential
allocate
CDF
zVariable
blocking factor
set144
CDF
zVariable
cache size

134

143

144

291

set145
CDF
zVariable
compression
set146
CDF
zVariable
data type
set147
CDF
zVariable
dimension variances
set147
CDF
zVariable
number of initial records
set148
CDF
zVariable
record variance
set149
CDF
zVariable
compression reserve percentage
set150
CDF
zVariable
cache size
set150
CDF
zVariable
sequential location
setl51
CDF
zVariable
sparse record flag
setl152
CDF
attribute
existence
confirm
CDF
gentry
existence
confirm
CDF
rEntry
existence
confirm
CDF
zEntry
existence
confirm
CDF
attribute
create
CDF
attribute
delete
CDF
global attribute
entry

169

170

170

171

172

173

delete
CDF
rVariable attribute
entry
delete
CDF
zVariable attribute
entry
delete
CDF
global attribute
last Entry number
get
CDF
rVariable attribute
last Entry number
get
CDF
zVariable attribute
last entry number
get
CDF
attribute
number
get
CDF
rVariable attribute
entry
number of elements
get
CDF
zVariable attribute
entry
get
CDF
zVariable attribute
entry
data type
get
CDF
zVariable attribute
entry
number of elements
get
CDF
rVariable attribute
number of entries
get
CDF
zVariable attribute
number of entries
get
CDF
number of global attributes
get
CDF

number of variable attributes

get
CDF
attribute
information
get

173

174

175

178

179

180

181

184

185

186

187

189

190

191

191

193

292

CDF
global attribute
entry
information
get 194
CDF
rVariable attribute
entry
information
get 195
CDF
zVariable attribute
entry
information
get 196
CDF
global attribute
entry
write 197
CDF
rVariable attribute
entry
write 198
CDF
zVariable attribute
entry
write 199
CDF
attribute
rename 200
CDF
global attribute
entry
specification
set201
CDF
rVariable attribute
entry
specification
set202
CDF
attribute
data scope
set202
CDF
zVariable attribute
entry
specification
set203
closing
CDF 33
rVariable 153
creating
attribute 162, 205, 207, 208, 209, 211, 213, 214, 215,
216, 217
CDF 34
rVariable 154
deleting
CDF 36
get
CDF
Copyright 30

library version
data type size
rVariable

data

inquiring

attribute

entry
attribute number
CDF

error code explanation text

rVariable
variable number
interpreting
status codes
opening
CDF
reading
attribute entry
rVariable values
hyper
renaming
attribute
rVariable
status handler
writing
attribute
gEntry
rEntry
rVariable
multiple records/values
rVariable
Exception handling
Fixed statement
getAttrgEntryNumElements
getAttrMaxgEntry
GLOBAL_SCOPE
HOST_DECODING
HOST_ENCODING
HP_DECODING
HP_ENCODING
[A64VMSd_DECODING
[A64VMSd_ENCODING
[A64VMSg_DECODING
[A64VMSg_ENCODING
IA64VMSi_DECODING
TIA64VMSi_ENCODING
IBMPC_DECODING
IBMPC_ENCODING
IBMRS_DECODING
IBMRS_ENCODING
id 13
inquiring
CDF information
Interface
Leap Seconds
Library
error text
inquiring
Library
Copyright
inquiring
version

31
30

155

165
163
166
37,52
32,38
158
159

219

54
164
156

168
161
219

167
167

157
160
27
27
177
178
19
16
15
17
15
17
16
17
16
17
16
17
15
17
15

37
24,29
23

31

30

293

inquiring
Limitation
dimensions
limits
attribute name
Copyright text
dimensions
explanation/status text
file name
parameters
variable name
Limits of names
MAC_DECODING
MAC_ENCODING
MULTI_FILE
multidimensional arrays
namespace
NEGtoPOSfpOoff
NEGtoPOSfpOon
NETWORK_DECODING
NETWORK_ENCODING
NeXT_DECODING
NeXT_ENCODING
NO_COMPRESSION
NO_SPARSEARRAYS
NO_SPARSERECORDS
NOVARY
PAD_SPARSERECORDS
parseEPOCH
parseEPOCH1
parseEPOCH16
parseEPOCH16_1
parseEPOCH16_2
parseEPOCH16_3
parseEPOCH16_4
parseEPOCH2
parseEPOCH3
parseEPOCH4
parseTT2000
Passing arguments
PREV_SPARSERECORDS
programming interface
CDFid
CDF status
READONLYoff
READONLYon
ROW_MAJOR
rVariables
data records
deleting
rVariables
check existence
creation
deleting
pad value
checking existence
rVariables
record numbers
allocated records
inquiring
rVariables
blocking factor

31
28

20
20
20
20
20
20
20
20
17
16
14
26
11
20
20
16
15
17
16
18
19
19
18
19
223
223
223,226
227
227
227
227,228
223
223
223
231,232
24
19

13
13
19
19
17

74,75
68
71
73

68

80

inquiring
rVariables
cache size
inquiring
rVariables
compression
inquiring
rVariables
reading
single value
rVariables
data type
inquiring
rVariables
dimension variances
inquiring
rVariables
information
inquiring
rVariables
record numbers
maximum allocated records
inquiring
rVariables
record numbers
maximum written record
inquiring
rVariables
name
inquiring
rVariables
number of elements
inquiring
rVariables
written records
inquiring
rVariables
pad value
inquiring
rVariables
reading
one record
rVariables
record variance
inquiring
rVariables
compression
reserve percentage
inquiring
rVariables
dimension sizes
inquiring
rVariables
reading
sequential data
rVariables
sequential position
inquiring
rVariables
maximum written record
rVariables
rVariables

81

82

82

83

84

85

86

87

87

88

&9

&9

90

91

92

92

93

93

94

95

294

dimensionality
inquiring
rVariables
sparse records type
inquiring
rVariables
reading
multiple values or records
rVariables
writing
multiple values or records
rVariables
inquiring
rVariables
writing
single data
rVariables
pad value
resetting
rVariables
writing
record data
rVariables
writing
sequential data
rVariables
renaming
rVariables
records
allocation
rVariables
records
allocation
rVariables
blocking factor
resetting
rVariables
cache size
resetting
rVariables
compression
resetting
rVariables
data specification
resetting
rVariables
dimension variances
resetting
rVariables
records
writing initially
rVariables
record variance
resetting
rVariables
compression
reserve percentage
resetting
rVariables
cache size
resetting
rVariables

96

96

115

118

122

124

125

126

127

131

133

134

134

135

136

137

137

138

139

140

140

sequential position
resetting
rVariables
sparse records type
resetting
rVariables
close
rVariables
creation
rVariables
reading
single value
rVariables
hyper read
multiple values or records
rVariables
hyper put
multiple values or records
rVariables
writing
single value
rVariables
renaming
sample programs
SGi_ DECODING
SGi_ ENCODING
SINGLE FILE
sparse arrays

types
sparse records

types
status
status codes
constants
CDF_OK
CDF_WARN
error
explanation text
inquiring
max length
informational
interpreting
warning
SUN_DECODING
SUN_ENCODING
TT2000
computing
decomposing
encoding
info
parsing
utility routines
CDFgetLastDateinLeapSecondsTable
computeTT2000
encodeTT2000
parseTT2000
TT2000breakdown
TT2000breakdown
VARIABLE SCOPE
variables
compression
types/parameters

141

142
152

153

154

155

156

160

161
12
17
15
13

19

19
13

13,219
13

13

239

38
20
239
219
239
16
15

229

230

231

232
231,232
229

232

229

231
231,232
230

230

19

18

data specification
data type
inquiring
number of elements
inquiring
dimensionality
inquiring
inquiring
majority
considering
constants
COLUMN_MAJOR
ROW_MAIJOR
maximum records
inquiring
name
inquiring
naming
max length
records
sparse
sparse arrays
types
variable number
inquiring
variances
constants
NOVARY
VARY
Variables
variable number
inquiring
VARY
VAX DECODING
VAX _ENCODING
VB-CDF Interface
zMODEoff
zMODEonl
zMODEon2
zVariables
data records
deleting
zVariables
check existence
creation
deleting
pad value
checking existence
zVariables
record numbers
allocated records
inquiring
zVariables
blocking factor
inquiring
zVariables
cache size
inquiring
zVariables
compression
inquiring
zVariables

295

157
157

51
51

17
17
17
17

51

157
71,72,153
20

19

19

159

18

18
18

97
18
16
15
24,29
20
20
20

76,77
69

72
76

70

98

99

100

100

reading data
zVariables
data type
inquiring
zVariables
dimension sizes
inquiring
zVariables
dimension variances
inquiring
zVariables
information
inquiring
zVariables
record numbers
maximum allocated record
inquiring
zVariables
record numbers
maximum written record
inquiring
zVariables
name
inquiring
zVariables
dimensionality
inquiring
zVariables
number of elements
inquiring
zVariables
record numbers
written records
inquiring
zVariables
pad value
inquiring
zVariables
reading
one record
zVariables
record variance
inquiring
zVariables
compression
reserve percentage
inquiring
zVariables
sequential data
reading one value
zVariables
sequential position
inquiring
zVariables
record numbers
written records
maximum

rVariables and zVariables

zVariables
sparse records type
inquiring
zVariables

101

102

103

104

104

105

106

106

107

108

108

109

110

111

111

112

113

114

115

reading
multiple values or records
zVariables
writing
multiple values or records
zVariables
inquiring
zVariables
writing
single data
zVariables
pad value
resetting
zVariables
writing
record data
zVariables
writing
sequential data
zVariables
renaming
zVariables
records
allocation
zVariables
records
allocation
zVariables
blocking factor
resetting
zVariables
cache size
resetting
zVariables
compression
resetting
zVariables
data specification
resetting
zVariables
dimension variances
resetting
zVariables
records
writing initially
zVariables
record variance
resetting
zVariables
compression
reserve percentage
resetting
zVariables
cache size
resetting
zVariables
sequential position
resetting
zVariables
sparse records type
resetting

117

120

123

128

129

130

130

132

142

143

144

145

145

146

147

148

148

149

150

151

151

297

